Results and Discussion

Table 22.1 reports the yield and physicochemical indices of the oils. Different oil yield was found for each sample: the lowest value was obtained for E. leucoxylon (0.15%) and E. ovata (0.17%); the opposite resulted for E. punctata (1.41%) and E. blakelyi (1.42%). Differences of these yields with those reported in literature could be attributed to many factors (age of the tree, climate, nature of the soil, mode of extraction, method of analysis).

Table 22.1 Yields and physicochemical indices of different Eucalyptus essential oils.

Yields

Specific

Refractive

Optical

Acid

Ester

(% w/w)

gravity

index

rotation

value

value

(20°C)

(20°C)

(20°C)

E. punctata

1.41

0.9235

1.4524

-

1.21

14.21

E. leucoxylon

0.15

0.9263

1.4624

+3°

2.80

4.20

E. cladocalyx

0.49

-

-

-

-

-

E. blakelyi

1.42

0.8820

1.4846

-17.5°

3.51

17.53

E. ovate

0.17

0.8670

1.4756

5.61

29.45

E. microcorys

0.32

0.8790

1.4806

-25.0°

2.1

18.93

E. saligna

1.16

0.8980

1.4896

-

3.51

3.50

E. sideroxylon

0.77

0.9160

1.4636

+5.0°

2.10

18.93

E. albens

0.56

0.9080

1.4946

-

2.80

46.28

E. globulus

0.69

0.9265

1.4617

+4°95

4.38

9.80

E. camaldulensis

0.33

-

-

-

-

-

Table 22.2 reports the composition as single components and Table 22.3 the percentage composition of various classes of compounds for the analyzed Eucalyptus oils. On the whole, 100 components were identified. In E. punctata, E. leucoxylon, E. ovata, E. microcorys, E. sideroxylon, and E. globulus, the main compound was 1,8-cineole (from 26.6 to 77.1%); otherwise, p-cymene prevailed in E. blakelyi (29.3%) and E. camaldulensis (18.8%), benzaldehyde in E. cladoca-lyx (32.3%), P-phellandrene in E. saligna (16.8%), and spathulenol in E. albens (20.9%). It is interesting to note that Moroccan E. cladocalyx oil (Zrira et al., 1992) was free of benzaldehyde compared with the Algerian and the Uruguayan (34.20%) oils (Dellacassa et al., 1990). In opposite the Algerian E. globulus was free of phellandrene compared with the Moroccan (Zrira et al., 1992) or the Uruguayan (Dellacassa et al., 1990) species.

Table 22.2 Comparative percent composition of different Eucalyptus essential oils.

Compounds

A

B

C

D

E

F

G

H

I

J

K

Tricyclene

tr

tr

tr

tr

-

tr

-

tr

-

-

-

a-Thujene

0.1

tr

1.1

0.4

0.1

0.9

1.5

0.1

0.3

-

-

a-Pinene

7.7

9.9

6.7

1.3

7.8

7.9

10.9

2.0

1.0

9.0

3.3

a-Fenchene

0.1

tr

tr

tr

tr

tr

-

-

tr

tr

tr

Camphene

0.1

0.1

tr

0.1

tr

0.2

0.1

tr

0.1

0.1

tr

Thuja 2,4 (10) diene

0.2

tr

0.1

0.1

tr

tr

0.1

tr

tr

-

-

Benzaldehyde

tr

tr

32.3

tr

tr

-

tr

tr

0.1

-

-

Sabinene

tr

tr

0.6

0.2

tr

Tr

0.8

tr

0.1

tr

tr

ß-Pinene

4.1

0.5

0.2

0.1

0.4

0.9

0.4

0.2

0.1

0.2

tr

6- Méthyl-5-hepten-2-one

tr

tr

-

-

tr

-

tr

-

-

-

-

Myrcene

0.1

0.4

0.7

0.3

0.5

0.6

0.9

0.1

0.1

tr

-

Dehydro -1,8-cineole

tr

tr

tr

-

-

S-2-Carene

-

-

-

-

-

-

tr

-

-

-

-

a-Phellandrene

0.1

0.3

4.1

2.4

2.1

4.4

3.2

0.4

0.1

-

tr

a-Terpinene

0.1

tr

0.1

0.2

0.2

0.2

0.3

tr

0.1

-

Tr

p-Cymene

8.8

1.9

9.0

29.3

2.9

15.7

14.5

1.9

19.9

0.5

18.8

Limonene

tr

tr

tr

tr

tr

tr

tr

tr

1.6

0.5

tr

P-Phellandrene

tr

tr

12.1

6.5

tr

10.9

16.8

tr

tr

-

tr

1,8-Cineole

58.2

74.4

14.9

21.2

51.2

26.6

1.0

77.1

5.2

74.1

17.6

(Z)-P-Ocimene

tr

0.3

0.1

tr

4.7

0.1

tr

0.1

tr

tr

-

(E)-P-Ocimene

tr

tr

tr

0.1

0.5

0.1

0.1

tr

tr

-

-

y-Terpinene

0.1

0.3

0.3

0.2

0.1

0.2

0.4

0.1

0.1

tr

tr

cis-Sabinene hydrate

0.1

-

tr

-

tr

tr

0.1

tr

0.1

-

-

cis-Linalool Oxide <furanoid>

-

tr

tr

0.1

-

tr

-

-

0.1

tr

0.1

trans Linalool ox-

tr

tr

0.1

ide<furanoid>

Terpinolene

0.2

0.1

0.2

0.5

0.1

0.5

0.3

tr

0.3

tr

tr

a,p-Dimethylstyrene

-

-

-

-

-

tr

-

tr

-

tr

0.1

a-Pinene oxide

tr

0.1

0.2

Linalool

0.1

0.1

0.5

0.1

2.2

tr

1.9

0.1

0.9

tr

tr

Nonanal

tr

0.1

-

0.1

-

-

-

-

0.2

-

-

Isoamyl 2-methylbutyrate

0.1

0.1

tr

-

0.4

0.1

-

0.3

-

-

-

Isoamyl isovalerate

-

-

-

-

-

-

-

tr

-

-

-

P-Thujone

-

-

0.1

0.2

tr

-

0.1

0.1

0.1

-

0.3

P-Fenchol

0.2

0.1

-

-

-

0.3

-

-

-

tr

0.1

cis-p-Menth-2-en-1 -ol

0.2

0.1

0.1

0.8

0.2

0.4

1.0

-

1.0

-

-

a-Campholenal

0.2

tr

0.1

0.2

-

0.1

0.3

-

0.2

-

-

trans-Pinocarveol

2.8

2.0

1.5

0.8

0.5

1.6

1.4

0.6

0.2

2.7

6.8

trans-p-Menth-2-en-1 -ol

-

-

0.4

0.5

0.1

0.3

0.3

-

0.7

-

-

cis-Verbenol

0.1

tr

0.2

Nerol oxide

-

-

-

-

-

-

~

tr

-

-

-

Camphene hydrate

tr

tr

-

-

-

tr

-

-

-

tr

tr

Pinocarvone

1.1

0.8

0.4

0.2

0.1

0.6

0.2

0.1

0.1

-

-

Isomenthone

-

-

-

-

-

-

-

-

0.1

-

-

borneol

-

0.1

-

-

-

0.6

-

-

-

2.7

tr

Terpinen-4-ol

0.7

0.4

1.5

1.2

0.5

2.4

3.0

0.5

5.0

0.1

0.6

p-Cymen-8-ol +?

2.5

0.3

2.5

14.0

-

0.9

7.0

0.8

14.7

0.1

1.8

a-Terpineol

1.6

1.0

0.6

0.3

10.3

1.6

2.8

1.3

1.6

0.7

0.9

Myrtenal

1.5

0.1

0.2

0.3

0.1

0.2

0.5

0.1

0.3

tr

0.3

cis-Piperitol

-

-

tr

-

-

-

-

-

-

-

0.1

Verbenone

0.2

-

-

-

-

tr

0.6

-

-

-

1.6

Trans-piperitol

-

tr

0.3

0.3

0.1

0.2

-

-

0.4

-

-

Trans-carveol

0.3

0.1

0.1

0.3

0.1

0.1

0.2

0.2

0.2

0.1

0.5

Citronellol

-

-

-

-

-

-

-

-

tr

-

-

cis-Carveol

0.3

0.1

0.2

0.4

0.1

-

0.2

0.2

0.8

tr

tr

Cuminaldehyde

0.7

-

0.7

3.2

-

0.1

1.2

-

4.1

-

-

Carvone

0.2

tr

tr

-

0.2

tr

0.1

0.1

-

tr

0.3

Carvotanacetone

-

tr

-

-

-

tr

-

-

-

tr

-

Piperitone

0.1

tr

0.3

1.6

0.1

0.2

0.3

0.1

0.4

-

tr

Geraniol

-

0.1

Geranial

-

tr

tr

-

tr

-

tr

-

0.1

-

-

p-Mentha-1,3-diene-7-al

tr

-

0.1

0.1

-

tr

0.2

-

tr

-

-

Thymol

0.2

tr

0.1

0.6

tr

tr

0.4

tr

1.2

-

tr

Carvacrol

0.2

tr

0.1

0.4

tr

0.5

0.5

0.1

0.8

-

0.6

6-Hydroxy-carvotanacetone

tr

-

-

0.1

-

-

tr

-

tr

-

-

a-Terpenyl acetate

tr

-

0.1

0.1

-

-

-

2.1

tr

0.9

-

Citronellyl acetate

-

-

tr

-

-

-

-

-

-

-

-

ß-Elemene

tr

tr

-

-

-

cis-Jasmone

tr

a-Gurjunene

0.1

tr

-

-

-

ß-Caryophyllene

tr

-

0.2

0.1

-

0.1

0.4

0.2

-

-

-

ß-Gurjunene

-

-

-

-

tr

-

-

-

-

-

-

Aromadendrene

0.1

0.2

tr

tr

0.7

tr

tr

0.1

0.1

0.3

tr

a-Humulene

-

0.1

tr

-

-

-

0.1

tr

0.1

-

-

Allo-aromadendrene

tr

tr

0.1

0.1

0.2

tr

0.4

0.1

0.3

tr

-

ß-Ionone

-

tr

Germacrene D

-

-

-

0.1

-

-

-

-

-

-

-

2-Phenethyl-isovalerate

tr

tr

0.1

-

0.2

Bicyclogermacrene

-

-

0.1

0.3

-

0.2

0.8

1.0

-

-

-

a-Muurolene

-

-

tr

-

-

-

-

-

-

-

-

Y-Cadinene

-

-

tr

-

-

-

-

-

-

-

-

S-Cadinene

tr

-

0.2

-

tr

-

tr

-

-

-

-

¿ram-Calamenene

tr

-

-

-

-

tr

-

-

-

-

-

Elemol

-

-

tr

-

-

-

-

-

-

-

-

(E)-nerolidol

-

tr

Ledol

tr

0.2

-

0.1

0.5

0.8

tr

0.5

tr

tr

tr

Spathulenol

0.8

0.2

0.7

3.7

0.3

6.2

9.5

0.9

20.9

tr

0.4

Caryophyllene oxide

1.7

-

0.7

1.2

6.7

2.8

1.9

1.9

0.9

-

1.0

Globulol

-

3.0

0.8

0.5

Viridiflorol

0.1

0.6

tr

tr

1.1

2.8

0.2

1.7

0.1

0.1

tr

Humulene epoxide II

0.1

-

tr

tr

Y-Eudesmol

-

tr

-

-

-

-

-

-

tr

-

-

1-Epi-cubenol

tr

-

tr

a-Muurolol

-

-

-

-

-

tr

-

-

-

-

-

a-Eudesmol

0.3

0.1

-

-

tr

-

-

0.2

-

-

-

a-Cadinol

-

-

tr

-

-

0.4

-

-

-

-

-

(E,E)-Farnesol

-

-

-

-

-

-

-

0.1

-

-

-

(E,Z)-Farnesol

-

-

-

-

-

-

0.5

-

-

-

-

A: E. punctata; B: E. leucoxylon; C: E. cladocalyx; D: E. blakelyi; E: E. ovata; F: E. mi-crocorys; G: E. saligna; H: E. sideroxylon; I: E. albens; J: E. globulus; K: E. camaldulen-sis.

With regard to the monoterpene hydrocarbons, E. cladocalyx, E. micro-corys, E. blakelyi, and E. saligna showed the highest amount of the main component p-cymene. Moreover, a-pinene prevails in E. leucoxylon and E. ovata while a-pinene and p-cymene showed similar values in E. punctata and E. sideroxylon. Furthermore, the following hydrocarbons were present in significant amounts: pinene (4.1%) in E. punctata; (Z)-P-ocimene (4.7% ) in E. ovata; a-phellandrene (2.1% - 4.4%) in E. cladocalyx, E. blakelyi, E. ovata, E. microcorys, and

E. saligna; P-phellandrene (6.5-16.8%) in E. blakelyi, E. cladocalyx, E. microcorys, and E. saligna.

Alcohols content was found different in the different samples analyzed (from 7.1% to 48.6%), the most abundant constituents being trans-pinocarveol, terpinen-4-ol, a-terpineol, spathulenol, linalool, and viridiflorol. Sesquiterpene hydrocarbons were present in low amounts (0.2-1.6% ). The components present in all the oils analyzed were aromadendrene (<0.1-0.7%), allo-aromadendrene (<0.1-0.4%), bicyclogermacrene (<0.1-1.0%), P-caryophyllene (<0.1-0.4% ) and a-humulene (<0.1-0.1%) .

Table 22.3 Percent composition of various classes of compounds of the different Eucalyptus essential oils.

Classes

A

B

C

D

E

F

G

H

I

J

K

Monoterpene hydrocarbons

21.5

13.8

35.1

41.5

19.4

42.6

50.2

4.9

23.8

10.2

22.1

Sesquiterpene hydrocarbons

0.1

0.3

0.6

0.6

0.9

0.3

1.6

1.4

0.4

0.3

0.0

Alcohols

10.5

8.5

8.8

25.6

16.0

19.1

28.4

6.7

48.6

4.8

12.2

Aldehydes

2.4

0.2

33.4

3.9

0.1

0.4

2.2

0.1

5.0

0.0

0.6

Ketones

1.6

0.8

0.8

2.0

0.4

0.8

1.3

0.4

0.7

0.6

32.7

Esters

0.1

0.1

0.3

0.3

0.6

0.1

0.1

2.4

0.1

0.9

0.0

Oxides

60.0

74.4

15.6

22.6

57.9

29.4

2.9

79.0

6.2

74.3

18.8

Other classes

0.2

0.0

0.1

0.1

0.0

0.0

0.1

0.0

0.0

0.0

0.2

Total I dentified

96.4

98.1

94.7

96.6

95.3

92.7

86.8

94.9

84.8

91.1

86.6

Unknown

3.6

1.9

5.3

3.4

4.7

7.3

13.2

5.1

15.2

8.9

13.4

A: E. punctata; B: E. leucoxylon; C: E. cladocalyx; D: E. blakelyi; E: E. ovata; F: E. my-crocorys; G: E. saligna; H: E. sideroxylon; I: E. albens; J: E. globulus; K: E. camaldulen-sis.

A: E. punctata; B: E. leucoxylon; C: E. cladocalyx; D: E. blakelyi; E: E. ovata; F: E. my-crocorys; G: E. saligna; H: E. sideroxylon; I: E. albens; J: E. globulus; K: E. camaldulen-sis.

The percent composition of monoterpenes present in the emission of E. globulus is reported in Table 22.4. Most organic compounds present in the plant emission are also contained in the essential oils of the same plant species. Worth noting is the large predominance of 1,8-cineole both in the essential oil and in the emission of E. globulus. This interesting finding implies that the emitted organic compounds and those containing essential oils are produced from the same photosynthesis pathway. These results should be developed and extended to several plants in field or in laboratory conditions by measuring their emission rates using sensitive sampling technique and analysis with chiral capillary columns. Further studies are needed to confirm the chiral behavior of these compounds and to explain whether or not the enantiomeric distribution of monoterpenes could be related to the metabolic pathway of terpenes emissions. As the monoterpenes are believed to play ecological roles such as chemical defense or pollinator attraction, the discrimination in enantiomeric reactions or attractions would be taken into account for further investigations.

Table 22.4 Percent composition of biogenic volatile organic compounds in the emission of E. globulus._

Compounds

%

Compounds

%

a-Thujene

0.03

p-Cymene

3.5

(-)-a-Pinene

1.5

trans-P-Ocimene

1.9

(+)-a-Pinene

33.7

(+)—P-Phellandrene

n.d.

Myrcene

0.38

(—)—P-Phellandrene

n.d.

Tricyclene

n.d.

y-Terpinene

n.d.

(+)-Sabinene

n.d.

a-Terpinolene

n.d.

(—)-Sabinene

n.d.

1,8-Cineole

53.1

(+)-Camphene

n.d.

(—)-Linalool

n.d.

(—)-Camphene

n.d.

(+)-Linalool

n.d.

(+)-S-3-Carene

n.d.

(—)-4-Terpineol

0.10

(—)-S-3-Carene

n.d.

(+)-4-Terpineol

0.08

(+)-P-Pinene

0.22

(+)-a-Terpineol

n.d.

(—)-P-Pinene

0.46

(—)-a-Terpineol

n.d.

cis-P-Ocimene

0.46

(+)-y-Terpineol

0.07

(—)-Limonene

1.1

(—)-y-Terpineol

0.25

(+)-Limonene

3.1

Solar Panel Basics

Solar Panel Basics

Global warming is a huge problem which will significantly affect every country in the world. Many people all over the world are trying to do whatever they can to help combat the effects of global warming. One of the ways that people can fight global warming is to reduce their dependence on non-renewable energy sources like oil and petroleum based products.

Get My Free Ebook


Post a comment