Summary of literature published on MBRs for wastewater reuse

Water Freedom System

Survive Global Water Shortages

Get Instant Access

The use of MBRs for wastewater reuse applications is still in its infancy and research teams worldwide are focusing their attention on characterizing the performance of MBRs for wastewater reuse and developing approaches to optimize the treatment efficacy. Table 7 summarizes the results from some recent studies on the use of MBRs for wastewater reuse applications.

REFERENCES

[1] Business Communication Company, Membrane Bioreactors in the Changing World Water Market, Wellesley, MA, 2006.

[2] J. Mallevialle,, P.E. Odendaal, M.R. Wiesner (Eds.), Water Treatment Membrane Processes, McGraw Hill, New York, 1996.

[3] K. Zhang, K. Farahbakhsh, Removal of native coliphages and coliform bacteria from municipal wastewaters by various wastewater treatment processes: implications to water reuse, Water Res. 41 (2007) 2816-2824.

[4] G.T. Daigger, J.C. Lozier, G.V. Crawford, Water reuse applications using membrane technology, in: Proc. WEFTEC, Dallas, TX, CD-ROM, 2006.

[5] P. Cote, M. Liu, MBR beats tertiary filtration for indirect water reuse, Desal. Water Reuse 13 and 14 (2004) 32-40.

[6] P. Cote, S. Siverns, S. Monti, Comparison of membrane based solutions for water reclamation and desalination, Desalination 182 (2005) 251-257.

[7] Metcalf and Eddy., Wastewater Engineering, Treatment and Reuse, 4th ed., McGraw Hill, New York, 2003.

[8] T. Stephenson, S. Judd, B. Jefferson, K. Brindle, Membrane Bioreactors for Wastewater Treatment, IWA Publishing, London, 2000.

[9] P. Cote, M. Masini, D. Mourato, Comparison of membrane options for wastewater reuse and reclamation, Desalination 167 (2004) 1-11.

[10] M.A. Gander, B. Jefferson, S.J. Judd, Aerobic MBRs for domestic wastewater treatment: a review with cost considerations, Sep. Purif. Technol. 18 (2000) 119-130.

[11] P. Cornel, M. Wagner, S. Krause, Investigation of oxygen transfer rate in full-scale membrane bioreactors, Water Sci. Technol. 47(11) (2003) 313-319.

[12] M.H. Al-Malack, Performance of an immersed membrane bioreactor (IMBR), Desalination 214 (2007) 112-127.

[13] L. Innocenti, D. Bolzonella, P. Pavan, F. Cecchi, Effect of sludge age on the performance of a membrane bioreactor: influence on nutrient and metals removal, Desalination 146 (2002) 467-474.

[14] J. Wagner, K.H. Rosenwinkel, Sludge production in membrane bioreactors under different conditions, Water Sci. Technol. 41(10 and 11) (2000) 251-258.

[15] A. Monti, E.R. Hall, R.N. Dawson, H. Husain, H. Kelly, Comparative study of biological nutrient removal (BNR) processes with sedimentation and membrane based separation, Biotechnol. Bioeng. 96(4) (2006) 740-752.

[16] T. Melin, B. Jefferson, D. Bixio, C. Thoeye, W. De Wilde, J. De Koning, J. van der Graaf, T. Wintgens, Membrane bioreactor technology for wastewater treatment and reuse, Desalination 187 (2006) 271-282.

[17] B. Lejean, F. Luck (n.d.), Assessment of the membrane bioreactor technology and European market outlook, IDS Water White Paper, http://www.idswater.com/ water/europe/Whitepaper_Membrane_Bioreactor/155/paper_information.html

[18] J.E. Bailey, D.F. Ollis, Biochemical Engineering Fundamentals, 2nd ed., McGraw Hill, New York, 1986.

[19] F. Meng, B. Shi, F. Yang, H. Zhang, New insights into membrane fouling in submerged membrane bioreactor based on rheology and hydrodynamics concepts, J. Membr. Sci. 302 (2007) 87-94.

[20] G. Belfort, R.H. Davis, A.L. Zydney, The behaviour of suspensions and macro-molecular structures in cross-flow microfiltration, J. Membr. Sci. 96 (1994) 1-58.

[21] M. Cheryan, Ultrafiltration and Microfiltration Handbook, Technomic Publishing, Lancaster, PA, 1986.

[22] C.C.V. Chan, P.R. Berube, E.R. Hall, Shear profiles inside gas sparged submerged hollow fiber membrane modules, J. Membr. Sci. 297 (2007) 104-120.

[23] Y.Q. Liu, Y. Liu, J.H. Tay, Relationship between size and mass transfer resistance in aerobic granules, Lett. Appl. Microbiol. 40(5) (2005) 312-315.

[24] I.S. Chang, P. LeClech, B. Jefferson, S. Judd, Membrane fouling in membrane bioreactors for wastewater treatment, J. Environ. Eng. 128 (2002) 1018-1029.

[25] P.R. Berube, E.R. Hall, P.M. Sutton, Parameters governing the permeate flux in an anaerobic membrane bioreactor treating low strength municipal wastewater: a literature review, Water Environ. Res. 78 (2006) 887-896.

[26] T. Asano, F.L. Burton, H.L. Leverenz, R. Tsuchihashi, G. Tchobanogous, Water Reuse: Issues, Technologies and Applications, McGraw Hill, New York, 2007.

[27] G. Guglielmi, D. Chiarani, G. Andreottola, G. Ziglio, Membrane bioreactor technology for agricultural reuse of municipal wastewater: a comparative study, in: Proceedings of 2nd IWA National Young Water Professionals Conference, Berlin Germany, CD-ROM, 2007.

[28] S. Oota, T. Murakami, K. Takemura, K. Noto, Evaluation of MBR effluent characteristics for reuse purposes, Water Sci. Technol. 51(6 and 7) (2005) 441-446.

[29] H.M. Wong, C. Shang, G.H. Chen, Membrane bioreactor for wastewater treatment and reuse: virus removal, in: Proceedings of European Symposium on Environmental Biotechnology, Oostende, Belgium, 2004, pp. 133-136.

[30] K.H. Ahn, K.G. Song, I.T. Yeom, K.Y. Park, Performance comparison of direct membrane separation and membrane bioreactor for domestic wastewater treatment and reuse, Water Sci. Technol.: Water Supply 1(5-6) (2001) 315-323.

[31] G. Tao, K. Kekre, Z. Wei, T.C. Lee, B. Viswanath, H. Seah, Membrane bioreactors for water reclamation, Water Sci. Technol. 51(6 and 7) (2005) 431-440.

[32] G.A. Soriano, M. Erb, C. Garel, J.M. Audic, A comparative pilot-scale study of the performance of conventional activated sludge and membrane bioreactor under limiting operating conditions, Water Environ. Res. 75(3) (2003) 225-231.

[33] T.I. Yoon, H.S. Lee, C.G. Kim, Comparison of pilot scale performances between membrane bioreactor and hybrid conventional wastewater treatment systems, J. Membr. Sci. 242 (2004) 5-12.

[34] S.R. Chae, S.T. Kang, S.M. Lee, E.S. Lee, S.E. Oh, Y. Watanabe, H.S. Shin, High reuse potential of effluent from an innovative vertical submerged membrane bioreactor treating municipal wastewater, Desalination 2002 (2007) 83-89.

[35] J. deCarolis, S. Adham, J. Oppenheimer, K. Kinser, L. Webb, Evaluation of membrane bioreactor technology and desalting membranes for wastewater reuse, in: Proc. WEFTEC, Washington, DC, 2005, pp. 4134-4146.

[36] A.J. Spring, D.M. Bagley, R.C. Andrews, S. Lemanik, P. Yang, Removal of endocrine disrupting compounds using a membrane bioreactor and disinfection, J. Environ. Eng.

[37] S.A. Snyder, S. Adhan, A.M. Redding, F.S. Cannon, J. DeCarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination 202 (2007) 156-181.

[38] F. Fatone, P. Battistoni, F. Cecchi, Application of a membrane bioreactor for the treatment of low loaded domestic wastewater for water re-use, Water Sci. Technol.

[39] B. Lesjean, R. Gnirss, H. Buisson, S. Keller, A. Tazi-Pain, F. Luck. Outcomes of a 2 year investigation on enhanced biological nutrient removal and trace organics elimination in membrane bioreactors (MBR), Water Sci. Technol. 52(10-11) (2005) 453-460.

[40] L.S. Tam, T.W. Tang, G.N. Lau, K.R. Sharma, G.H. Chen, A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems, Desalination 202 (2007) 106-113.

[41] E.G. Helmig, J.D. Fettig, L. Cordone, API removal for pharmaceutical manufacturing wastewater - results from process development, pilot testing and scale-up, in: Proc. WEFTEC, Washington, DC, 2005, pp. 207-226.

[42] B. Mansell, J. Kuo, C.C. Tang, S.J. Huitric, W.H. Horvath, J.F. Stahl, Evaluation of removals of NDMA, hormones, pharmaceuticals, and personal care products in a membrane bioreactor, in: Proc. WEFTEC, Washington, DC, 2005, pp. 7411-7427.

[43] J. Oppenheimer, J. DeCarolis, S. Adham, S. Lagos, N. Tran, S. Snyder, G. Lorraine, Evaluation of membrane bioreactor and reverse osmosis for removal of endocrine disrupting compounds, pharmaceuticals and personal care products, in: Proc. WEFTEC, New Orleans, LA, CD-ROM, 2004.

[44] J.E. Drews, J. Hemming, S. Ladenburger, J. Schauer, W. Sonzogni, Endocrine disrupting activity changes in water reclamation systems, in: Proc. WEFTEC, Washington, DC, 2005, pp. 3196-3212.

[45] T. Wintgens, M. Gallenkemper, T. Melin, Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse, Water Sci. Technol. 50(5) (2004) 1-8.

[46] N. Jang, X. Ren, G. Kim, C. Ahn, J. Cho, I.S. Kim, Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse, Desalination 202 (2007) 90-98.

[47] A.M. Comerton, B.C. Andrews, D.M. Bagley, Evaluation of an MBR-RO system to produce high quality reuse water: microbial control, DBP formation and nitrate, Water Res. 39 (2005) 3982-3990.

[48] T. Ueda, N.J. Horan, Fate of indigenous bacteriophage in a membrane bioreactor, Water Res. 34(7) (2000) 2151-2159.

[49] S. Dukes, A. von Gottburg, Membrane bioreactors for RO pretreatment, in: Proc. WEFTEC, Dallas, TX, 2006, pp. 6121-6132.

[50] P. Cote, H. Buisson, C. Pound, G. Arakaki, Immersed membrane activated sludge for the reuse of municipal wastewater, Desalination 113 (1997) 189-196.

[51] A.E. Childress, P. LeClech, J.L. Daugherty, C. Chen, G.L. Leslie, Mechanical analysis of hollow fiber membrane integrity in water reuse applications, Desalination 180 (2005) 5-14.

[52] B. Jefferson, P. LeClech, S. Smith, A. Laine, S. Judd, The influence of membrane configuration on the efficacy of membrane bioreactors for domestic wastewater recycling, in: Proc. WEFTEC, Anaheim, CA, CD-ROM, 2000a.

[53] B. Jefferson, A.L. Laine, S.J. Judd, T. Stephenson, Membrane bioreactors and their role in wastewater reuse, Water Sci. Technol. 41(1) (2000) 197-205.

[54] M. Kumar, J. DeCarolis, S. Adham, Integrated membrane systems for wastewater reuse, in: Proc. WEFTEC, New Orleans, LA, 2004, pp. 1561-1585.

[55] Y.Z. Li, Y.L. He, D.G. Ohandja, J. Ji, J.F. Li, T. Zhou, Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: comparative study. Biores. Technol. 99 (2008) 5867-5872.

[56] Y. Liu, L. Wang, B. Wang, H. Cui, J. Zhang, Performance improvement of hybrid membrane bioreactor with PAC for water reuse, Water Sci. Technol. 53(10 and 11) (2005) 338-391.

[57] J. Lozier, A. Fernandez, Using a membrane bioreactor/reverse osmosis system for indirect potable reuse, Water Sci. Technol.: Water Supply 1(5) (2001) 303-313.

[58] H. Nagaoka, S. Ueda, A. Miya, Influence of bacterial extracellular polymers on the membrane separation activated sludge process, Water Sci. Technol. 34(9) (1996) 165-172.

[59] K.H. Krauth, K.F. Staab, Pressureized biomembrane reactor for wastewater treatment, Hydrotop 94 (1994) 555-562.

[60] H. Lin, Modeling Fouling in Membrane Systems, M.A.Sc. Thesis, Department of Civil Engineering, The University of British Columbia, 2007.

[61] T. Sato, Y. Ishii, Effects of activated sludge properties on water flux of ultrafiltration membrane used for human excrement treatment, Water Sci. Technol. 23 (1991) 1601-1608.

[62] K. Takemura, N. Ohkuma, M. Ohnishi, H. Andoh, Y. Okuno, Membrane separation activated sludge process for sewage treatment, Proc. Membrane Technology in Environmental Management, Tokyo, Japan, 1999, pp. 440-443.

Was this article helpful?

0 0
Going Green For More Cash

Going Green For More Cash

Stop Wasting Resources And Money And Finnally Learn Easy Ideas For Recycling Even If You’ve Tried Everything Before! I Easily Found Easy Solutions For  Recycling Instead Of Buying New And Started Enjoying Savings As Well As Helping The Earth And I'll Show You How YOU Can, Too! Are you sick to death of living with the fact that you feel like you are wasting resources and money?

Get My Free Ebook


Post a comment