Driving forces for transport

The main driving forces for transport are pressure, concentration, electrical potential, and temperature, each of which primarily influences the flux of solvent, solute, electrical current, and thermal energy, respectively. In addition to the primary effects, each of the driving forces has a cross-influence on the other fluxes. For instance, the pressure driving force can cause a flux of current, called the streaming current.

In RO systems, the only driving forces of interest are pressure and concentration, which lead to flux of solvent and solute, respectively (Table 1). The cross-influence of solute concentration driving force on solvent flux is represented by the osmotic pressure term in the solvent flux equation. The cross-influence of pressure driving force on solute flux is often small, for high separation membranes, and is therefore neglected.

The solvent flux equation, written here for both volume flux, JV, and molar flux of solvent, NB, indicates that flux is directly proportional to the effective pressure driving force:

Table 1 Driving forces of interest in reverse osmosis

Driving force

Pressure gradient Concentration gradient

Flux Solvent flow Solvent permeability Osmosis

Solute flow Ultrafiltration

Diffusion where C is the molar density (kmol/m3), A the pure water permeability coefficient [kmol/(mskPa)], AP the pressure difference across the membrane (kPa), and An the osmotic pressure difference across the membrane (kPa).

Was this article helpful?

0 0
Trash Cash Machine

Trash Cash Machine

How recyclable trash can save the world and bank us huge profits! Get All The Support And Guidance You Need To Be A Success At Recycling! This Book Is One Of The Most Valuable Resources In The World When It Comes To How To Make Profits With Trash!

Get My Free Ebook

Post a comment