Beginnings

Life is planetary exuberance, a solar phenomenon. It is the transmutation of Earth's air, water, and sun into cells. In order to appreciate the severe consequences of ecocide, it is necessary to examine the tenuous nature of biological evolution. Briefly, how did planetary life, including human life, evolve? Astrophysicists tell us that our universe came into being some 20 billion years ago with a "Big Bang." Five billion years ago, our planet formed. Life on earth evolved around 1 billion years later. Single-celled organisms found by paleontologists in ancient rocks suggest that simple life was flourishing as early as 3.8 billion years ago. These first biological organisms were able to use the water vapor, nitrogen, methane, and ammonia that made up the Earth's atmosphere for food and energy, probably through a process facilitated or catalyzed by metals such as iron and magnesium. Between 3.3 and 3.5 billion years ago, blue-green algae appeared. These single-celled organisms had the ability to convert energy from the sun into chemical energy through photosynthesis using hydrogen sulfide. Between 1 and 2 billion years ago, some bacteria adapted the use of water in photosynthesis. Oxygen, which is released as a byproduct of H2O photosynthesis, gradually appeared in Earth's atmosphere, and in turn facilitated the evolution and diversification of subsequent life forms. For billions of years, simple creatures like plankton, bacteria, and algae ruled the Earth. Then, suddenly, around 550 million years ago, the evolution of life accelerated, gaining in diversity and complexity.3

Born into the most biodiversity-rich evolutionary epoch in Earth's history, and genetically nearly indistinguishable from the bonobo chimpanzee, the earliest human predecessors make their appearance on the evolutionary scene in southern and central Africa around 4.5 million to 6 million years ago, belonging to the genus Aridipecus and Australopithecus.4 These first human ancestors Homo habilis and Homo erectus, emerging in Africa merely some 2.5 million and 1.6 million years ago, succeed these ape-like early hominid creatures. Equipped with a unique combination of biological and social attributes, hominids developed an upright stance with bipedal locomotion, prehensile hands with opposable thumbs, stereoscopic binocular vision, audio and vocal tract anatomy, and the largest and most complex brain of any hitherto existing primate. The biological creation of the ancestors of modern humans is a remarkable achievement of evolution by natural selection, which brought with it a new dimension to the evolutionary process - cultural evolution.

Any attempt to explain modern ecocide is necessarily based upon some historical understanding of how and when Homo reached the so-called sapiens stage of evolution. The purpose of this chapter is to show that the unique combination of biological attributes possessed by our species does not necessarily determine human social behavior except that it lays the foundation genetically for virtually unlimited variations of human behavior. In other words, "human nature" - the sum of biological attributes of our species - is analytically distinct from human behavior - the sum of social and cultural attributes of our species. My central argument is that, with regard to Homo sapiens, natural selection alone is not a sufficient explanation for the evolution of our species into Homo esophagus colossus. As some evolutionary biologists emphasize, biological evolution in the case of humans works to preserve and augment the human ability to create, absorb, and transmit culture. This surely does not mean, however, that we employ our cultural capacity only for the benefit of life on Earth. We obviously don't, and my underlying question is precisely how to explain this ultimately self-destructive tendency. As we will see in later chapters of this study, it is only when human biology combined with particular social organizational and institutional behavior that the danger arose of creating a global ecocide.5

The narrative connecting the subsections of this chapter is very much constituted by a number of historical questions, important for our understanding of the causal social mechanisms of ecocide. For example, when and how did primates begin to acquire complex language and culture? When did humans develop the social and technological capacities for both habitat creation and destruction? Why did agriculture and fixed settlements replace nomadic hunting, scavenging, and gathering? Of course, a discerning response to these questions must be predicated upon a clear understanding of what we mean by "human beings."

It seems obvious that humans are unlike other animals. Molecular genetic studies have shown that we continue to share 98.3 per cent of our DNA with the bonobo chimpanzee, our closest ape relative in the animal kingdom.6 The total genetic distance between chimpanzees and us is even smaller than the distance between such closely related bird species as North American red-eyed and white-eyed vireos.7 Bonobo chimpanzees have rudimentary elements of culture8 and a sense of self that entails basic linguistic elements.

They are far more vocal than any other of the great apes and much more peaceful than other chimps. They have never been seen to kill their own relatives and they possess the ability to read basic emotive stages on the faces of their kind, a feature shared by all higher primates. They pat each other on the hand to show affection or kiss or embrace each other; they have menopause, develop lifelong friendships, and grieve for their dead babies by carrying them for days or weeks; they have the ability to perform simple calculations and they communicate using signs. Bonobos are also the most sexual of all primates, a distinctive behavioral feature that Dutch ape researcher Frans de Waal sees as an important social function, not as a mere means of species reproduction.9

However, even between humans and the great apes lies a seemingly unbridgeable gulf when we separate ourselves from such "animals." This difference is reflected in our socio-cultural capacities that have been responsible both for our present biological success and failures. Humans are learning creatures with a massively expanded capacity for culture. Flexibility and learning are the hallmarks of human biological and cultural evolution.10 We talk, write, and build complex machines. We fundamentally depend on complex social organization and institutions for survival. For example, we cook, steam, fry, roast, smoke, pickle, or freeze our foods, and we brew alcoholic and non-alcoholic beverages in myriad variations. Most of us wear clothes, enjoy art, and many believe in some form of religion. We are scattered across the entire planet, and we have even begun to explore outer space.

Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment