Info

Free Power Secrets

Making Your Own Fuel

Get Instant Access

These men might have lived subsistence lives, more familiar with hunting gear and judging ice and weather than with the teachings of Western education, but they were no slouches when it came to organizing and participating in modern governance systems. They knew the laws that affect how they live, and they knew the strength they bring, through tribal rights and their own citizenship, to influencing regulations and the decisions of government agencies. In addition to chairing the elders' group, David Bill, who lives in the village of Toksook Bay, served on a subsistence halibut board created by the National Marine Fisheries Service, the board of the nonprofit Bering Sea Fishermen's Association, and his local school board. Interpreter Fred Phillip was a leader in his own right; the natural resources director for the Native village of Kwigillingok, he has also served on many organizational boards and traveled dozens of times to Washington DC to represent the interests of his people before Congress.

Outside, the temperature was at zero, and the November sun skidded low across a pale blue sky. Snow machines zipped along the frozen Kuskokwim River, and taxis ($5 to anywhere in town) plied the icy roads. A thin snow cover was just enough to brighten the landscape: no trees but the wooden buildings squatting on pilings. Smoke drifted sideways from a few stovepipes, evidence of shifts away from expensive heating oil to the burning of wood pallets and cardboard. (There was talk of importing firewood from the forests of southeast Alaska.)

The elders all well understood why they had come to Bethel, and each of the three days, they were seated at the tables, ready to work, well in advance of starting times. They stayed in those seats for hours, more attentive than any meeting-goers I've seen in my life. Now and then a cell phone rang and one reached into a pocket to hold a brief and muffled conversation.

The elders knew that they had until 2011 to influence where the bottom trawlers go and to make their case for protecting the subsistence use that lies at the heart of their lives and culture. They knew that they couldn't just say, "We want to protect as much as possible of the sea that provides for us," and expect the rightness of that principle to prevail over the tremendous economic value of all those fish that might be caught if bottom trawling was allowed to follow the climate shift north. They would need to identify, in a way that resource managers and policy makers could understand and quantify, exactly what areas they and the animals depended on for their lives. They would have to present a concrete proposal—data—that said, this is the value here and here and here, and this is the reason this area—this exact piece of Imarpik—should be protected. What was once a wholeness already had lines drawn across it; they had to participate in the system that would further divide up the big container. The scientists knew science, but only they—the elders—held the wealth of generational knowledge about the animals and what they ate, the seasonal cycles, the way water and ice moved, and how things changed over time, all those interwoven aspects scientists called an ecosystem. And only they were looking out for the needs of their people and the future generations.

The elders, revered in their communities for their knowledge and connections to the wisdom of the past, know about change. They've seen more than most, in every aspect of their lives. For years they'd been speaking out about the changes they've seen in and around the Bering Sea. They'd watched sea ice form later and retreat earlier and faster. They'd witnessed surprising storm patterns, different movements of fish and marine mammals, new species showing up, sudden die-offs of seabirds, unusual plankton blooms, and other environmental oddities beyond their usual experience or what they had learned from their elders to expect as "normal." They're well aware that, as rich as the Bering Sea is, its productivity is less than it used to be. They've seen steep declines in species of marine mammals, birds, and fish. They've caught smaller salmon and mammals with thinner fat layers.

In my own travels through the Bering Sea, in the four years I worked on adventure cruise ships and stopped in villages all the way to Russia, I heard repeated concerns about the difficulty in predicting weather or anticipating storms, about decreasing numbers of fur seals at the Pribilof Islands and evidence that the young animals were starving on the rookeries, about kittiwakes failing to lay eggs. On a Russian island I looked down from a cliff top at thousands of walrus hauled out on a single rocky beach. From our Zodiacs, I pointed out schools of jellyfish and the fins of salmon sharks, and very few of the endangered Steller sea lions. I explored the remains of an ancient whaling culture in Russia, studied through fog the more recently abandoned King Island village near Nome, and heard from the people of Little Diomede about their reliance on winter ice for airplane access—and that shortening season. I watched gray whales stirring up the bottom along the beach at St. Matthew Island, was shown the hide of a brown bear that had ridden the ice from Russia to St. Lawrence Island, and heard about hunters having to go farther after prey. I heard about the hunting party—with children—that drowned when their boat overturned in a storm.

Scientists now were documenting the same changes local people had been reporting for years.3 They spoke of ecosystem stress and nutritional stress, of "regime change." They studied ice and the relationship of ice to productivity. Regular surveys had shown that forty-five fish species had shifted their ranges northward. Predator species were altering their diets and sometimes traveling greater distance to find food. "Grabs" of the sea floor from research vessels were finding fewer clams and other benthic species.

Due to its remoteness, size, and often fierce weather, it has always been a challenge to conduct scientific research in the Bering Sea. If the science had lagged what local people observed, mounting data supported the need for a new approach to fisheries management. The old method had centered on single species; survey the "biomass" (how much of the species was out there) and then allow for a percentage take each year, based on what was guessed to be a "maximum sustainable yield." (In other words, fish those commercial species as hard as possible without depleting them.) Conservation organizations had begun hammering on the need to consider the entire ecosystem and be precautionary. They argued that fishery managers should look beyond the population numbers of commercial species and calculations of sustainable catches. In this new world, managers need to be able to predict population trends in a rapidly changing environment and factor in a new degree of environmental variability. In light of so much uncertainty, they need to manage conservatively, carefully track trends, and identify and protect ecologically important areas under stress from climate change. They need to do all this against the pressure of a high-stakes fishing industry that wants to catch as much "product" as can be justified.

And thus it was that tribes from the Bering Sea region, with a number of conservation organizations, in 2007 won that rare victory at the industry-dominated North Pacific Fisheries Management Council. The council unanimously agreed that as-yet-unexploited portions of the northern Bering Sea should be at least temporarily protected from an expansion of industrial fishing. The managers noted specifically that rising temperatures could result in a redistribution of fishery resources into and within northern waters and that they bore a responsibility for making sure that, before fisheries were allowed to expand, adequate protections would be in place for marine mammals, crabs, animals listed under the Endangered Species Act, and subsistence resources depended on by local people.

Dorothy Childers, representing the Alaska Marine Conservation Council, said at the time, "The Bering Sea faces diminishing sea ice and other uncertain changes caused by global warming. Now more than ever, it is important to prevent the introduction of new sources of impact like bottom trawling in the sensitive northern region."

During most of the elders'group gathering, Childers, a slight woman in a Shetland sweater and jeans, was nearly invisible. She sat off to one side, headphones for the translations around her neck, dark hair loose around her face, pen and notepad in hand. Only when scribes were needed for the mapping did she come to the tables and assist with questions for the elders.

This was not her meeting, and yet she was essential to it.

Since 1995, Childers had worked for the Alaska Marine Conservation Council as either its executive director or program director and had established a solid reputation for working with coastal communities. She'd earned this reputation because she genuinely cared—not just for the seals and the fish and unpolluted seas but for the people who depend on marine resources for their lives and livelihoods. She sees absolutely no contradiction between conserving the marine environment and supporting the people who use that environment. That ethic, in fact, is at the heart of all AMCC's work; the grassroots organization exists to protect habitat, prevent overfishing and waste, and promote "clean," community-based fishing opportunities. (In full disclosure, I was one of the organization's founding members in 1992.)

Childers, in her support role, looks like a shy person, nonthreaten-ing. In fact, she's a brainy strategist, and a warrior, a force to be reckoned with. In addition to directing AMCC, she has sat on various marine-related panels and committees and is currently a member of the North Pacific Research Board (a Ted Stevens creation, with $1.6 billion to fund research that will "enable effective management and sustainable use of Alaska's marine resources"). Childers is also one of five international recipients of a 2007 highly competitive and prestigious Pew Fellowship in Marine Conservation.4

Childers's original idea for her Pew Fellowship was to address challenges of fisheries management in the Bering Sea in the face of climate change. In particular, she wanted to encourage Natives, fishermen, and field scientists to fully share their perspectives and help develop new approaches to managing fisheries in a way that would foster resilience to the warming ocean. She had in mind the development of a zoning plan to limit adverse fishery effects as fish move northward—and that local people would help drive policy changes regarding both fisheries management and climate change.

"So how do you think it's gone?" I asked her one evening in Bethel, while she and AMCC program assistant Julia Beaty taped together maps in a hotel room.

"Better than I imagined," she said, with a look that suggested she was still surprised by how it had turned out. "I'd envisioned using existing information to identify important areas that needed protection, but I didn't imagine this sort of engagement. The villages were fired up from the beginning." She'd sent information about the boundary issue out to villages, and David Bill, who understood the federal process, had stepped forward as a leader. Elders from eight tribes formed the advisory group as an organized way to provide traditional guidance; soon twenty tribes were involved, then more, until the membership reached thirty-seven and stretched all the way to Little Diomede in the Bering Strait. (A second elders meeting, like the one in Bethel, would soon be held in Nome, to gather the members from the northern region.) Childers and AMCC helped with fundraising and logistics. AMCC's western Alaska coordinator, a high-powered Inupiaq woman named Muriel Morse, supported the elders project by traveling to villages to work with tribal leaders and to interview elders selected by the tribes. Beaty, the assistant who had started out as an AMCC intern, learned to make GIS maps.

The Bering Sea Elders Advisory Group took on its own life, and Childers would claim little credit for any of it. She denied to me having anything to do with empowering others. "They're already empowered. It was totally the tribes that decided to speak out. All they need is access to information so they can influence decision makers." The information she could help with was how to put together what they knew, how to package it in a way that was not just acceptable in the Western, science-based, political world, but that would be convincing as well. She padded in sock feet across the hotel room. "What I do is just technical assistance. They know they have to make the case for what they want. They're the only ones who can do that. We're just helping."

The mission adopted by the elders' group doesn't speak to climate change directly but is driven by it implicitly. The goal is "to enable Alaska Native tribes to fully participate in the federal fishery management process regarding upcoming decisions affecting the Bering Sea."Their "deliverable," as we say in the world I come from, is to be a unified proposal justifying the protection of the areas most valued for both ecological significance and subsistence use. In other words, they hope to weave their traditional knowledge into the data and understandings of Western science, to help fishery managers decide how best to protect the Bering Sea—or at least key areas of it. The final product, Childers imagined, would be a proposal for protected areas, in the form of a booklet that would include maps, justifications, and the specific statements of individual elders. It would come from the tribes, with their endorsements.

On its web page, the group's executive director, Arthur Lake, is quoted: "Our people have survived since time immemorial due to a complete understanding and respect for the land and waters that provide food, clothing, and spiritual sustenance. We are now facing challenges before unseen by our people. This project engages our villages and will help our children to stay connected to their roots and the wisdom of the Elders."

In the Bering Sea, it's all about the ice. That puts it too simply, of course, but Native people and scientists know that ice plays an essential role in the life of the Bering Sea, just as it does in the Arctic. Sea ice is, of course, the habitat of species like seals and walrus. Algae grow on it, in turn feeding species that live under the ice and at the ice edge. The formation, movement, and melting of ice affect not just the sea's biological productivity but ocean currents and the exchange of heat between ocean and atmosphere, in an enormously complex system.

Scientists who speak of a "reorganizing of the Bering Sea bio-geography" are just now teasing out some of the effects of climate and ice changes there. They're challenged by many factors—not just the difficulty of working in such an extreme environment, but by a lack of historical data, the complex interactions among processes, and the inherent uncertainties in how events will play out.

Always, the weather and climate in the Bering Sea have been both harsh and variable. Caught between the cold, dry Arctic air mass to the north and the moist, relatively warm air mass to the south, the climate and weather systems of the Bering Sea are influenced by natural cycles including the Pacific Decadal Oscillation (PDO), the Arctic Oscillation (AO), and El Niño/La Niña—as well as by global warming. We were, in late 2009, in both a cold phase of the PDO and an El Niño warming trend.

From temperature-related research, we now know this: Since 1950, the ice cover in the Bering Sea has decreased. (There is considerable variability here including, in 2008, winter ice extending southward past the historic mean, but the overall trend line for this period has been down. And aside from spatial coverage, the ice has gotten thinner.) We also know that, since 1980, water temperatures in the Bering Sea have increased by about 1.8 degrees Fahrenheit. (Again, lots of variability. Based on temperatures recorded at moorings, from 2001 to 2005 the southern shelf of the Bering Sea warmed; then in 2007-2008 it cooled.) A poster I studied in the basement of the Alaska Fisheries Science Center in Kodiak showed the relationship between ice cover and the catch of opilio crab (Chionoecetes opilio); the more ice, the more crab. It also showed the southern Bering Sea "cold pool"—an area of cold bottom water on the continental shelf, formed under ice—contracting and moving northward by 143 miles since 1982. The text read "As cold bottom water moves north, Arctic species (like opilio crab) are lost from the southern Bering Sea." When I visited the lab, they were preparing to chill water to replicate Bering Sea conditions and to test the effects on the metabolisms of various Arctic species.

The evidence—experiential and scientific—of a rich Bering Sea becoming less rich is backed by some decades-long data. One study of chum salmon weights since the 1960s showed a steady decline in size, indicating they were getting less to eat. In 2000 an analysis of carbon isotopes in historic samples of whale baleen suggested a 30 to 40 percent decline in average seasonal primary production since 1970. "Primary production" is, essentially, phytoplankton (those microscopic, free-floating, photosynthesizing organisms) at the base of the food chain, which feed everything above it.

This is what we know about phytoplankton production: It is generally controlled by sunlight and available nutrients, but in the Bering Sea it has also depended on seasonal sea ice. When the ice melts in spring, the influx of water with lower salinity encourages a "bloom" of phytoplankton. And, the ice itself supports the bloom, with the sea algae that grow on it. Change the ice coverage and the timing of the melt and you change the size, timing, and the species makeup of the phytoplankton bloom.

The Bering Sea has changed, in my lifetime, from a primarily cold Arctic ecosystem dominated by sea ice to sub-Arctic conditions. There are winners and losers as the result of this change. When there was more sea ice and it melted in the spring, the resulting bloom occurred before there were many zooplankton (mostly microscopic animals) to feed on it, and it tended to fall to the sea bottom and feed species that live there. The lack of sea ice results in a later (and smaller) bloom, which gets eaten by the zooplankton and other species in the higher parts of the water column before it can fall to the bottom. Thus, to mention just two commercial fish species, the biomass of pollock has in recent years increased dramatically (despite heavy fishing) and the flatfish known as Greenland turbot, which lives close to the bottom and likes cold water, has declined in equally dramatic measure. The very rich benthic (bottom-dwelling) communities of worms, clams, and crustaceans—on which gray whales, walrus, diving birds, and other bottom feeders depend—are less rich than they so recently were.

Scientists also worry about the mismatch of prey availability and predator needs. A later phytoplankton bloom prolongs the winter hunger period of fish and shellfish; many won't survive their juvenile stages. Meanwhile, warmer ocean temperatures may cause some species to reproduce earlier, before foods they need are available. Studies of phenology (the interactions between the yearly life cycle of a species and the yearly climate cycle) have shown that most species, around the globe, are advancing their breeding, hatching, budding, and migrating times.5 In a California study, the common murre (a diving bird that eats mostly small fish and zooplankton) was found to be breeding a remarkable two months earlier in 2000 than in 1975.

The loss of ice in the Bering Sea is likely to have additional effects. More open water in winter may add to the severity of rough seas and increase the mortality of birds at sea. Warmer water requires cold-blooded fish to increase their metabolism, which requires more food; this is a particular problem for young fish, which rely on fat reserves to get through their first winter.

Even the Discovery Channel is doing its part to help educate its viewing public about the environment in which the Deadliest Catch crabs live.6 A Q&A on its website discusses ice, the warming climate, and ecosystem research, and ends with a quote from oceanographer Phyllis Stabeno: "The one thing you can say is, it's going to change. And if you like what you've got, change may or may not be good."

On the first day at the Bering Sea elders' gathering, the elders listened (via their translator) to a presentation by Tom Van Pelt, the program manager for the North Pacific Research Board, about the science that organization funds. One of the NPRB's primary programs is specific to the Bering Sea—an integrated ecosystem research program to look at, among other things, changing ice and currents, food availability, and how those changes cascade through the whole system. The idea, Van Pelt said, is for the one hundred scientists working on specific projects to think beyond their particular projects and disciplines and try to gain a larger understanding of how all things relate and interact. After three years of field seasons, two years (2011—12) would be given to synthesizing the results.

I thought I detected in the room a certain amount of puzzlement. Were the scientists only coming to realize, at this late date, that all things were connected?

One of Van Pelt's slides, among those that showed scientists taking sediment and ice cores, collecting plankton, and darting walrus with satellite transmitters for tracking their movements, was a cartoon from The New Yorker. In it, several ladies in dresses were socializing around a silver tea service, and one was saying, "I know I should care about the bottom of the ocean, but I just don't."

Nobody laughed.

There were questions following the science presentation, and they were all about the effects of bottom trawling on the ocean floor and the bycatch caught in trawlers' nets. These were not parts of the NPRB's program, and Van Pelt could only say that he wasn't the right person to ask about those specifics. The science currently being conducted is more basic to the workings of the Bering Sea, though I knew the scientists would agree that maximum sharing of information—science, traditional knowledge, the effects of fishing and other activities—would be a good thing, something to work toward for the holistic understanding they sought.

The elders' immediate concern about trawling was whether areas for bottom trawling would be expanded in the Bering Sea, but they also expressed alarm about the amount of pollock fishing taking place in deeper waters—and the bycatch from that fishery.

The most valuable fish (considering volume) in Alaska and the world's most abundant food fish is one that most Americans wouldn't recognize and may never have even heard of. Alaska pollock or walleye pollock (Theragra chalcogramma), a North Pacific member of the cod family, is a modest-looking, one- or two-pound, speckled fish with a lot of fin area, top and bottom. Landings of pollock from the Bering Sea are the largest of any single fish species in the United States, some 2.5 billion pounds a year, valued at hundreds of millions of dollars. On an individual basis, pollock is a low-value fish; with its white flesh and mild taste, it ends up not in fish markets or fancy restaurants but made into fish sticks, fast-food fish fillets, and artificial crabmeat. Since the late 1970s, as a result of changes in the Bering Sea, pollock have done very well; only recently have their numbers begun to drop and catches been reduced.

What both fishermen and scientists have found is that pollock are indeed moving northward. Generally, pollock spawn each winter in the southern Bering Sea, near the Aleutian Islands, then follow their food (plankton and small fish) north as waters warm in the spring. The bulk of them, following the outer contour of the continental shelf, now migrate to and beyond the international border with Russia. In effect, Alaska's pollock are becoming Russian pollock.

Andrew Rosenberg, a former deputy director of the National Marine Fisheries Service, was quoted in the Los Angeles Times in 2008: "It [the northward pollock movement] will be a food security issue and has an enormous potential for political upheaval."7 He expected that pollock would be a test case in a growing pattern of fish driven by climate change across jurisdictional borders.

Once in Russian waters, the pollock are caught by Russian fishermen in a poorly managed, probably overexploited fishery that's known to be plagued by lax enforcement and poaching. Catches there have been increasing as the Alaskan catches have been throttled back to stay at sustainable levels.

Pollock is just one of the species moving north in the Bering Sea, but because of its enormous economic value, it has gotten serious attention. Twenty-five years of scientific surveys have shown that dozens of other fish species are also shifting to the north.8 The range shift—thirty miles for pollock, thirty-four for halibut, fifty-five for opilio crab—is occurring two or three times faster than that of terrestrial species. According to the scientists, these species appear to be shifting in response to the extent of seasonal ice, itself moving northward and correlated to climate change.

As vital as the Bering Sea is for the men and women meeting in Bethel, the climate change-induced threats we see there extend far beyond Alaska's shores. It's not just the Bering Sea's rich ecosystem that's at stake, it's also the life support systems that the Bering Sea influences and the entire world needs.

Ifwe know little about the effects of global warming on the Bering

Sea, we know barely more about those effects on any of the oceans— which cover three-quarters of our earth and house 90 percent of the planet's biomass. Compared to land, oceans have been inadequately studied; everywhere, ocean research is difficult, resource intensive, and expensive. The Intergovernmental Panel on Climate Change, for example, gave little attention to the marine system.9

Consider: Ocean temperatures may be a better indicator of global warming than air temperatures, because the ocean stores more heat (90 percent of the heat in the earth's climate system) and responds more slowly to change. Recent studies suggest the ocean is warming 50 percent faster than the IPCC reported in 2007 (and that thermal expansion rates and sea level rise were thus also underestimated by a similar amount). The next IPCC report is expected to give greater attention to ocean science, including the uncertainties in understanding and modeling climate change because of deficiencies in the knowledge base.

What we do know at this point is "big picture"— global warming affects ocean temperatures, the supply of nutrients that enter the ocean from the land, ocean chemistry, marine food webs, wind systems, ocean currents, the volume of ocean water, and extreme events such as hurricanes. The ecological responses to these are already playing out in processes ranging from primary production (where all the eating begins) to biogeography (where organisms live) to evolution.

Considerable attention has been given to the effect of warming on thermohaline (thermo as in temperature and haline as in salt content) circulation (also known as the ocean conveyor belt), which is what moves both energy and material around the world and thus has a huge influence on climate. Most of that attention has gone to the possibility of the slowing, or even shutdown, of the North Atlantic "conveyor." In the North Atlantic, pools of cold, dense water sink, pulling warm surface waters north from the tropics. With warming and the addition of freshwater from the melt of glaciers and the Greenland ice cap, the sinking of cold water has lessened in recent years. A map of the path of the thermohaline circulation looks somewhat like a picture of the human body's blood circulation; blue lines mark the deepwater currents, red the surface currents, and they all tie in and keep moving.10 The oldest waters, with a transit time of some sixteen hundred years, end up in the North Pacific, finally in the Bering Sea. Clearly, if that first deep-water formation in the North Atlantic quits on us, the entire ocean circulation will be altered—kind of like your heart stopping.

There are many other implications of climate change for our oceans, poorly understood at present. A warmer ocean will hold less oxygen, for one thing. A warmer ocean will increase stratification, potentially locking nutrients away from those who need them. A warmer ocean with less ice appears to be freeing up mercury and other pollutants, raising contaminant levels throughout the food web and accumulating at the top, in marine mammals and those who eat them.11 A warmer ocean already appears, in the Arctic, to be releasing methane clathrate (hydrate) compounds—large frozen methane deposits that lie mostly under sediments on the ocean floor, though some also underlie permafrost on land. Methane, remember, is roughly twenty times more potent as a greenhouse gas than carbon dioxide. The carbon in these frozen deposits is thought to exceed that in all other fossil fuels on earth combined. Not to be too alarmist here, but there is strong evidence that runaway methane clathrate release may have caused major alterations of the ocean environment and earth's atmosphere on a number of occasions in the past, most notably in connection with the Permian-Triassic extinction event (the Great Dying) 251 million years ago. At that time, 96 percent of marine species and 70 percent of terrestrial vertebrate species went extinct.

Of the nine "tipping elements" scientists have identified where global warming could push the world past tipping points to force abrupt, potentially irreversible changes and large, long-term consequences for the earth's climate, seven relate to the ocean and its dynamics.12

While warming itself alters the chemistry of the ocean, so does the absorption of carbon dioxide from the atmosphere.

When I first talked to Dorothy Childers about her work with the Bering Sea elders, I'd asked if the elders involved in the project were also considering ocean acidification. Her face had taken on a pained look. "No," she said. "It just hasn't come up because we've been so focused on documenting culturally important areas we want considered in fisheries management. The combination of a warming Bering Sea and ocean acidification is a lot to swallow all at once."

At the Bethel meeting, I never heard the words ocean acidification. In a context of the need for his elders to add their knowledge to the scientific system, one younger man who participated spoke of fish becoming smaller as a result of the ocean's "carbon dioxide absorption." And perhaps it had been suggested in the presentation about research, when Tom Van Pelt showed slides of water sampling— how samples were taken at different depths to see what lived there, and to check temperature and chemistry.

I can track my own education about ocean acidification by looking in a file folder in my office. The first clippings are from 2006, when a report by two dozen concerned scientists was mentioned in The Washington Post with a headline "Growing Acidity of Oceans May Kill Corals." Later that year Elizabeth Kolbert's article "The Darkening Sea: What Carbon Emissions Are Doing to the Ocean" appeared in The New Yorker. In 2007 the headlines proliferated and grew more urgent: rising acid levels threaten shellfish, oceans' growing acidity alarming, oceans are being choked to death. Dorothy Childers's organization, the Alaska Marine Conservation Council, took an early lead in bringing "OA" to the attention of its membership, made up largely of coastal residents and commercial fishermen. AMCC spearheaded the development of a "coastal community climate change compact," adopted by a number of municipal governments in support of policies, actions, and initiatives aimed at mitigating both climate change and ocean acidification.

"Climate change's evil twin," Richard Feely had called acidification, on an AMCC-sponsored visit to Alaska early in 2008. At that time, Feely, a chemical oceanographer at the National Oceanic and Atmospheric Association's (NOAA) Pacific Marine Environmental Lab in Seattle, was still largely introducing ocean acidification to people hearing about it for the first time. Even at that late date there was no direct government funding for research on acidification, something he lamented to me when we met for lunch. A mild-looking man, with graying hair and studious glasses, Feely told me that in the course of studying the ocean carbon cycle, he'd found himself on the front lines of discoveries that were truly alarming, and the lack of direct research coupled with the ticking of the clock compelled him to speak out. In 2007 he'd testified to Congress that ocean acidification was an emerging scientific issue in need of a coordinated research program; he called it "one of the most significant and far-reaching consequences of the buildup of anthropogenic carbon dioxide in the atmosphere."

Simply put, ocean acidification (a term coined in 2003 by Ken Caldeira and Michael Wickett of Stanford University) is "the other CO2 problem."13 All that carbon dioxide we've been putting into the atmosphere hasn't stayed in the air. About 30 percent of all human-caused CO2 emissions—which include those resulting from land clearing, cement production, and other activities, as well as burning fossil fuels—end up in the oceans. Today the oceans hold about 140 billion metric tons of human-contributed carbon.14 Scientists used to think this "buffering" of global warming was a good thing and even tried to think of ways to direct more CO2 into the oceans. The oceans are so enormous, after all. Who ever imagined that humans could significantly change their chemistry? But that is, in fact, what has happened.

As we might recall from high school chemistry, pH measures the acidity of water, with 7.0 being neutral. Surface ocean waters are slightly alkaline, ranging from 7.8 to 8.5, and polar waters are less alkaline than the global average. In the last two hundred years, the global average pH has dropped by about 0.1. That doesn't sound like much, except the pH scale is, like the Richter scale for earthquakes, logarithmic; that is, a 0.1 decline represents a 30 percent increase in acidity.

Maybe even that doesn't sound so frightening, until you consider that by the end of this century, seawater pH is expected to drop by as much as 0.3 to 0.4, a 150 to 200 percent increase in acidity. The last time it was that acidic was more than twenty million years ago. Since the atmosphere and ocean normally work to establish an equilibrium, balancing out their gases, the ocean will be absorbing atmospheric CO2 for a long time to come, even if we were to stop burning fossil fuels today.

To be clear, it's not that ocean waters are turning to acid. As the CO2 is absorbed from the atmosphere by the ocean, it mixes with water to create corrosive carbonic acid. The water becomes less alkaline, thus more acidic. The danger of this acidification is that marine organisms have evolved to thrive within certain pH ranges, and the abrupt change in chemistry will stress them in ways only now suggesting themselves. For one (big) thing, the dissolved CO2 (by creating carbonic acid and depleting carbonate ions) reduces the calcium carbonate available to shell builders including corals, crabs, mussels, clams, snails, oysters, sea stars, and many planktonic calci-fiers at the base of the food chain. The chemistry problem is referred to in scientific terms as "undersaturation with respect to aragonite," with aragonite being a principal form of calcium carbonate.

Some scientists have likened the effects of acidification to osteoporosis, the disease that in humans causes the thinning of bone tissue and loss of bone density over time. If you don't have the material with which to build structures, the structures will be compromised.

Carbon dioxide is more soluble in cold water than in warmer water, and areas closest to the poles are expected to be the first affected by acidification.15 And it's not just the amount of anthropogenic CO2 that's a factor in cold waters. Other processes work in combination to increase acidification and lower the concentrations of forms of calcite used in shell building.16 There's the freshening of water as ice melts, increased biological activity after ice melts (which produces more CO2 when organic matter decays in subsurface waters), and upwellings of low-pH waters—all contributors to the problem.

Feely and colleagues had been involved in water sampling all along the West Coast, from Mexico to Canada; he was the lead author of an article published a few months after his Alaska visit in the journal Science, detailing the analysis that showed surprisingly acidic waters.17 The authors had not anticipated that deep ocean waters would, through the process of upwelling, already be topping the continental shelf and carrying corrosive waters to the biologically productive areas close to shore. Already, a large section of the North American continental shelf was affected by ocean acidification, and so likely were other shelf regions. Some pH levels were measured at 7.75. This was one hundred years earlier than the models had predicted.

How such acidification was affecting the complex ocean processes and interwoven ecosystems was not at all clear. There was almost no data about what was actually happening to marine life or systems. Feely emphasized to me, "The Bering Sea is where we really need to know what's happening."

Water sampling along Alaska's coast had shown that the most corrosive waters lay at the edge of the continental shelf and were rising at about a meter a year in the water column. The Bering Sea—where the water was not only cold but "old"—having risen from the deep after traveling the ocean's conveyor belt, picking up carbon all the way—was thus perhaps most at risk. Feely feared that acidification

Was this article helpful?

0 0
Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment