Geographic information systems

magma through subvolcanic feeder systems and in lava tubes, flow of material into (and out of) subduction zones, as well for understanding mantle flow associated with glacial rebound. Thermal convection is modeled in fluid dynamics and has obvious applications to mantle convection, the driving forces of plate tectonics, and also to systems such as modeling fluid flow around hot springs, submarine black smoker chimneys, and geological mineral deposits formed by circulating hot fluids.

Geodynamics is concerned with the rheology or mechanical behavior of materials and how strain is accommodated at the crystal lattice and atomic scales, then applies the physics at these scales to the deformation of the mantle, asthenosphere, and lithosphere. Brittle and ductile/brittle deformation mechanisms can be modeled in geodynamics, including the mechanics of thrust-faulted terranes, the geometry of faulting, extensional fault systems, and strike-slip fault systems.

Flow of fluids in porous media is studied in geodynamics, with applications to flow of water in aquifers, petroleum and hydrocarbons in reservoirs, and general flow laws for fluids moving through any porous or fractured medium.

See also convection and the Earth's mantle; crystal, crystal dislocations; energy in the Earth system; geophysics; plate tectonics.

Was this article helpful?

0 0
The Basic Survival Guide

The Basic Survival Guide

Disasters: Why No ones Really 100 Safe. This is common knowledgethat disaster is everywhere. Its in the streets, its inside your campuses, and it can even be found inside your home. The question is not whether we are safe because no one is really THAT secure anymore but whether we can do something to lessen the odds of ever becoming a victim.

Get My Free Ebook


Post a comment