References Of Crop Physiology

Acock, B. and Allen, L.H. Jr (1985) Crop responses to elevated carbon dioxide concentration. In: Strain, B.R. and Cure, J.D. (eds) Direct Effects of Increasing Carbon Dioxide on Vegetation. US Department of Energy, Carbon Dioxide Research Division, DOE/ER-0238, Washington, DC, pp. 53-97.

Acock, B., Reddy, V.R., Hodges, H.F., Baker, D.N. and McKinion, J.M. (1985) Photosynthetic responses of soybean canopies to full-season carbon dioxide enrichment. Agronomy Journal 77, 942-947.

Allen, L.H. Jr (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants. Journal of Environmental Quality 19, 15-34.

Allen, L.H. Jr (1999) Evapotranspiration responses of plants and crops to carbon dioxide and temperature. Journal ofCrop Production (in press).

Allen, L.H. Jr, Jones, P. and Jones, J.W. (1985) Rising atmospheric CO2 and evapotranspiration. In: Advances in Evapotranspiration. Proceedings of the National Conference, ASAF Publication no. 14-85, American Society of Agricultural Engineers, St Joseph, Michigan, pp. 13-27.

Allen, L.H. Jr, Boote, K.J., Jones, J.W., Jones, P.H., Valle, R.R., Acock, B., Rogers, H.H. and Dahlman, R.C. (1987) Response of vegetation to rising carbon dioxide: photosynthesis, biomass, and yield of soybean. Global Biogeochemical Cycles 1, 1-14.

Allen, L.H. Jr, Vu, C.V., Valle, R., Boote, K.J. and Jones, P.H. (1988) Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Science 28, 84-94.

Allen, L.H. Jr, Bisbal, E.C., Campbell, W.J. and Boote, K.J. (1990a) Carbon dioxide effects on soybean development stages and expansive growth. Soil and Crop Science Society of Florida Proceedings 49, 124-131.

Allen, L.H. Jr, Valle, R.R., Mishoe, J.W., Jones, J.W. and Jones, P.H. (1990b) Soybean leaf gas exchange responses to CO2 enrichment. Soil and Crop Science Society of Florida Proceedings 49, 192-198.

Allen, L.H. Jr, Bisbal, E.C., Boote, K.J. and Jones, P.H. (1991) Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agronomy Journal 83, 875-883.

Allen, L.H. Jr, Valle, R.R., Mishoe, J.W. and Jones, J.W. (1994) Soybean leaf gas-exchange responses to carbon dioxide and water stress. Agronomy Journal 86, 625-636.

Allen, L.H. Jr, Bisbal, E.C. and Boote, K.J. (1998) Nonstructural carbohydrates of soybean plants grown in subambient and superambient levels of carbon dioxide. Photosynthetic Research 56, 143-155.

Allen, L.H. Jr, Valle, R.R., Jones, J.W. and Jones, P.H. (1998) Soybean leaf water potential responses to carbon dioxide and drought. Agronomy Journal 90, 375-383.

Amthor, J.S. (1997) Plant respiratory responses to elevated carbon dioxide partial pressure. In: Allen, L.H. Jr, Kirkham, M.B., Olszyk, D.M. and Whitman, C.E. (eds) Advances in Carbon Dioxide Effects Research. ASA Special Publication No. 61, American Society of Agronomy, Madison, Wisconsin. pp. 35-77.

Baker, J.T. and Allen, L.H. Jr (1993) Contrasting crop species responses to CO2 and temperature: rice, soybean, and citrus. Vegetatio 104/105, 239-260. Also in: Rozema, J., Lambers, H., van de Geijn, S.C. and Cambridge, M.L. (eds) CO2 and Biosphere. Advances in Vegetation Science 14, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 239-260.

Baker, J.T., Allen, L.H. Jr, Boote, K.J., Jones, P. and Jones, J.W. (1989) Response of soybean to air temperature and carbon dioxide concentration. Crop Science 29, 98-105.

Baker, J.T., Laugel, F., Boote, K.J. and Allen, L.H. Jr (1992) Effects of daytime carbon dioxide concentration on dark respiration of rice. Plant, Cell and Environment 15, 231-239.

Booker, F.L., Reid, C.D., Brunschon-Harti, S., Fiscus, E.L. and Miller, J.E. (1997) Photosynthesis and photorespiration in soybean [Glycine max (L.) Merr.] chronically exposed to elevated carbon dioxide and ozone. Journal of Experimental Botany 48, 1843-1852.

Boote, K.J., Pickering, N.B. and Allen, L.H. Jr (1997) Plant modeling: advances and gaps in our capability to predict future crop growth and yield. In: Allen, L.H., Jr, Kirkham, M.B., Olszyk, D.M. and Whitman, C.E. (eds) Advances in Carbon Dioxide Effects Research. ASA Special Publication No. 61, ASA-CSSA-SSSA, Madison, Wisconsin, pp. 179-228.

Briggs, L.J. and Schantz, H.L. (1914) Relative water requirements of plants. Journal of Agricultural Research 3, 1-63.

Bunce, J.A. and Ziska, L.H. (1996) Responses of respiration to increased carbon dioxide concentration and temperature in three soybean cultivars. Annals of Botany 77, 507-514.

Campbell, W.J., Allen, L.H. Jr and Bowes, G. (1988) Effects of CO2 concentration on rubisco activity, amount, and photosynthesis in soybean leaves. Plant Physiology 88, 1310-1316.

Cure, J.D. (1985) Carbon dioxide doubling responses: a crop survey. In: Strain, B.R. and Cure, J.D. (eds) Direct Effects of Increasing Carbon Dioxide on Vegetation. US Department of Energy, Carbon Dioxide Research Division, DOE/ER-0238, Washington, DC, pp. 53-97.

Cure, J.D., Israel, D.W. and Rufty, T.W. Jr (1988a) Nitrogen stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. Crop Science 28, 671-677.

Cure, J.D., Rufty, T.W. Jr and Israel, D.W. (1988b) Phosphorus stress effects on growth and seed yield responses of nonnodulated soybean to elevated carbon dioxide. Agronomy Journal 80, 897-902.

Curry, R.B., Peart, R.M., Jones, J.W., Boote, K.J. and Allen, L.H. Jr (1990a) Simulation as a tool for analyzing crop response to climate change. Transaction of the American Society of Agricultural Engineers 33, 981-990.

Curry, R.B., Peart, R.M., Jones, J.W., Boote, K.J. and Allen, L.H. Jr (1990b) Response of crop yield to predicted changes in climate and atmospheric CO2 using simulation. Transaction of the American Society of Agricultural Engineers 33, 1383-1390.

Curry, R.B., Jones, J.W., Boote, K.J., Peart, R.M., Allen, L.H. Jr and Pickering, N.B. (1995) Response of soybean to predicted climate change in the USA. In: Rosenzweig, C., Allen, L.H. Jr, Harper, L.A., Hollinger, S.E. and Jones. J.W. (eds) Climate Change and Agriculture: Analysis of Potential International Impacts. Special Publication No. 59, American Society of Agronomy, Madison, Wisconsin. pp. 163-182.

DeWitt, C.A., Waldron, R.E. and Lambert, J.E. (1983) Response of Vegetation to Carbon Dioxide. Number 010: Effects of carbon dioxide enrichment on nitrogen fixation in soybeans (1982 Progress Report), Clemson University, Clemson, SC. Joint Program of the US Department of Energy, Carbon Dioxide Research Division and the US Department of Agriculture, Agricultural Research Service, Washington, DC.

Egli, D.B. and Wardlaw, I.F. (1980) Temperature response of seed growth characteristics of soybean. Agronomy Journal 72, 560-564.

Fehr, W. and Caviness, E.C. (1977) Stages of Soybean Development. Iowa State University Cooperative Extension Service Special Report 80, Ames, Iowa.

Fiscus, E.L., Reid, C.D., Miller, J.E. and Heagle, A.S. (1997) Elevated CO2 reduces O3 flux and O3-induced yield losses in soybeans: possible implications for elevated CO2 studies. Journal of Experimental Botany 48, 307-313.

Gesch, R.W., Boote, K.J., Vu, J.C.V., Allen, L.H. Jr and Bowes, G. (1998) Changes in growth CO2 result in rapid adjustment of ribulose-1,5-bisphosphate carboxylase/

oxygenase small subunit gene expression in expanding and mature leaves of rice. Plant Physiology 118, 521-529.

Gonzales-Meler, M.A., Ribas-Carbo, M., Siedrow, J.N. and Drake, B.G. (1996) Direct inhibition of mitochondrial respiration by elevated CO2. Plant Physiology 112, 1349-1355.

Grimm, S.S., Jones, J.W., Boote, K.J. and Herzog, D.C. (1994) Modeling the occurrence of reproductive stages after flowering for four soybean cultivars. Agronomy Journal 86, 31-38.

Hall, A.E. and Allen, L.H. Jr (1993) Designing cultivars for the climatic conditions of the next century. In: Buxton, D.R., Shibles, R., Forsberg, R.A., Blad, B.L., Asay, K.H., Paulsen, G.M. and Wilson, R.F. (eds) International Crop Science I. Crop Science Society of America, Madison, Wisconsin. pp. 291-297.

Harlan, J.R. (1992) Crops and Man, 2nd edn. American Society of Agronomy and Crop Science Society of America, Madison, Wisconsin.

Harley, P.C., Weber, J.A. and Gates, D.M. (1985) Interactive effects of light, leaf temperature, [CO2] and [O2] on photosynthesis in soybean. Planta 165, 249-263.

Harley, P.C. and Tenhunen, J.D. (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote, K.J. and Loomis, R.S. (eds) Modeling Crop Photosynthesis from Biochemistry to Canopy. CSSA Special Publication 19, American Society of Agronomy, Madison, Wisconsin. pp. 17-39.

Heagle, A.S., Heck, W.E., Rawlings, J.O. and Philbrick, R.B. (1983) Effects of chronic doses of ozone and sulfur dioxide on injury and yield of soybeans in open-top field chambers. Crop Science 23, 1184-1191.

Heagle, A.S., Miller, J.E. and Booker, F.L. (1998a) Influence of ozone stress on soybean response to carbon dioxide enrichment. I. Foliar properties. Crop Science 38,113-121.

Heagle, A.S., Miller, J.E. and Pursley, W.A. (1998b) Influence of ozone stress on soybean response to carbon dioxide enrichment. III. Yield and seed quality. Crop Science 38, 128-134.

Heck, W.W., Taylor, O.C., Adams, R.M., Bingham, G., Miller, J.E., Preston, E.M. and Weinstein, L.H. (1982) Assessment of crop loss from ozone. Journal of Air Pollution Control Association 32, 353-361.

Heck, W.W., Cure, W.W., Rawlings, J.O., Zaragoza, L.J., Heagle, A.D., Heggestad, H.E., Kohut, R.J., Kress, L.W. and Temple, P.J. (1984) Assessing impacts of ozone on agricultural crops. I. Overview. Journal of Air Pollution Control Association 34, 729-735.

Hesketh, J.D., Myhre, D.L. and Willey, C.R. (1973) Temperature control of time interval between vegetative and reproductive events in soybeans. Crop Science 13, 250-254.

Hofstra, G. and Hesketh, J.D. (1975) The effects of temperature and CO2 enrichment on photosynthesis in soybean. In: Marcelle, R. (ed.) Environmental and Biological Control of Photosynthesis. Dr W. Junk, The Hague, The Netherlands, pp. 71-80.

Huber, S.C., Rogers, H.H. and Mowry, F.L. (1984) Effects of water stress on photosynthesis and carbon partitioning in soybean (Glycine max [L.] Merr.) plants grown in the field at different CO2 levels. Plant Physiology 76, 244-249.

Jones, P., Allen, L.H. Jr, Jones, J.W., Campbell, W.J. and Boote, K.J. (1984) Soybean canopy growth, photosynthesis, and transpiration responses to whole-season carbon dioxide enrichment. Agronomy Journal 76, 633-637.

Jones, P., Allen, L.H. Jr, Jones, J.W. and Valle, R. (1985a) Photosynthesis and transpiration responses of soybean canopies to short- and long-term CO2 treatments. Agronomy Journal 77, 119-126.

Jones, P., Allen, L.H. Jr and Jones, J.W. (1985b) Responses of soybean canopy photosynthesis and transpiration to whole-day temperature changes in different CO2 environments. Agronomy Journal 77, 242-249.

Jones, P., Jones, J.W. and Allen, L.H. Jr (1985c) Seasonal carbon and water balances of soybeans grown under CO2 and water stress treatments in sunlit chambers. Transaction of the American Society of Agricultural Engineers 28, 2021-2028.

Jones, P., Jones, J.W. and Allen, L.H. Jr (1985d) Carbon dioxide effects on photosynthesis and transpiration during vegetative growth in soybeans. Soil and Crop Science Society of Florida Proceedings 44, 129-134.

Kimball, B.A. (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy Journal 75, 779-788.

Kimball, B.A., Mauney, J.R., Nakayama, F.S. and Idso, S.B. (1993) Effects of increasing CO2 on vegetation. Vegetatio 104/105, 65-75.

Kramer, P.J. (1981) Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31, 29-33.

Miller, J.E., Heagle, A.S. and Pursley, W.A. (1998) Influence of ozone stress on soybean response to carbon dioxide enrichment. II. Biomass and development. Crop Science 38, 122-128.

Morison, J.I.L. (1987) Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger, E., Cowan, I. and Farquhar, G.D. (eds) Stomatal Function. Stanford University Press, Stanford, California. pp. 229-251.

Oechel, W.C. and Strain, B.R. (1985) Native species responses to increased atmospheric carbon dioxide concentration. In: Strain, B.R. and Cure, J.D. (eds) Direct Effects of Increasing Carbon Dioxide on Vegetation. US Department of Energy, Carbon Dioxide Research Division, DOE/ER-0238, Washington, DC, pp. 53-97.

Pan, D. (1996) Soybean responses to elevated temperature and CO2. PhD dissertation, University of Florida, Gainesville, 224 pp.

Peart, R.M., Jones, J.W., Curry, R.B., Boote, K.J. and Allen, L.H. Jr (1989) Impact of climate change on crop yield in the Southeastern USA: a simulation study. In: Smith, J.B. and Tirpak, D.A. (eds) The Potential Effects of Global Climate Change on the United States. Appendix C, Agriculture, Vol. 1. EPA-230-05-89-053. US. EPA, Office of Policy, Planning and Evaluation (PM-221), Washington, DC, pp. 2-54.

Priestley, C.H.B. and Taylor, R.J. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100, 81-92.

Pruitt, W.O. (1964) Cyclic relations between evapotranspiration and radiation. Transaction of the American Society of Agricultural Engineers 7, 271-275.

Reid, C.D. and Fiscus, E.L. (1998) Effects of elevated [CO2] and/or ozone on limitations to CO2 assimilation in soybean (Glycine max). Journal of Experimental Botany 49, 885-895.

Reid, C.D., Fiscus, E.L. and Burkey, K.O. (1998) Combined effects of chronic ozone and elevated CO2 on Rubisco activity and leaf components in soybean (Glycine max). Journal of Experimental Botany 49, 1999-2011.

Rogers, H.H., Bingham, G.E., Cure, J.D., Smith, J.M. and Surano, K.A. (1983) Responses of selected plant species to elevated carbon dioxide in the field. Journal of Environmental Quality 12, 569-574.

Rogers, H.H., Cure, J.D., Thomas, J.F. and Smith, J.M. (1984) Influence of elevated CO2 on growth of soybean plants. Crop Science 24, 361-366.

Rogers, H.H., Cure, J.D. and Smith, J.M. (1986) Soybean growth and yield response to elevated carbon dioxide. Agricultural Ecosystems and Environment 16, 113-128.

Rogers, H.H., Runion, G.B. and Krupa, S.V. (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution 83, 155-189.

Rogers, H.H., Runion, G.B., Krupa, S.V. and Prior, S.A. (1997) Plant responses to atmospheric carbon dioxide enrichment: implications in root-soil-microbe interactions. In: Allen, L.H. Jr, Kirkham, M.B., Olszyk, D.M. and Whitman, C.E. (eds) Advances in Carbon Dioxide Effects Research. Special Publication No. 61, ASA-CSSA-SSSA, Madison, Wisconsin, pp. 1-34.

Rosenberg, N.J., Kimball, B.A., Martin, F. and Cooper, C.F. (1990) From climate and CO2 enrichment to evapotranspiration. In: Waggoner, P.E. (ed.) Climate Change and US Water Resources. John Wiley & Sons, New York, pp. 151-175.

Rowland-Bamford, A.J., Allen, L.H. Jr, Baker, J.T. and Bowes, G. (1991) Acclimation of rice to changing atmospheric carbon dioxide concentration. Plant, Cell and Environment 14, 577-583.

SAS (1985) User's Guide: Statistics, 5th edn. SAS Institute, Cary, North Carolina.

Sasek, T.W., DeLucia, E.H. and Strain, B.R. (1985) Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations. Plant Physiology 78, 619-622.

Serraj, R., Sinclair, T.R. and Allen, L.H. Jr (1998) Soybean nodulation and N2 response to drought under carbon dioxide enrichment. Plant, Cell and Environment 21, 491-500.

Shibles, R., Anderson, I.C. and Gibson, A.H. (1975) Soybean. In: Evans, L.T. (ed.) Crop Physiology, Some Case Histories. Cambridge University Press, Cambridge, pp. 151-189.

Sionit, N., Strain, B.R. and Flint, E.P. (1987a) Interaction of temperature and CO2 enrichment on soybean: growth and dry matter partitioning. Canadian Journal of Plant Science 67, 59-67.

Sionit, N., Strain, B.R. and Flint, E.P. (1987b) Interaction of temperature and CO2 enrichment on soybean: photosynthesis and seed yield. Canadian Journal of Plant Science 67, 629-636.

Tanner, C.B. and Lemon, E.R. (1962) Radiant energy utilized in evapotranspiration. Agronomy Journal 54, 207-212.

Thomas, J.F. and Harvey, C.N. (1983) Leaf anatomy of four species grown under continuous CO2 enrichment. Botanical Gazette 144, 303-309.

Tissue, D.L. and Oechel, W.C. (1987) Physiological response of Eriophorum vaginatum to field elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68, 401-410.

Valle, R.R., Mishoe, J.W., Campbell, W.J., Jones, J.W. and Allen, L.H. Jr (1985a) Photosynthetic responses of 'Bragg' soybean leaves adapted to different CO2 environments. Crop Science 25, 333-339.

Valle, R.R., Mishoe, J.W., Jones, J.W. and Allen, L.H. Jr (1985b) Transpiration rate and water-use efficiency of soybean leaves adapted to different CO2 environments. Crop Science 25, 477-482.

Vu, C.V., Allen, L.H. Jr and Bowes, G. (1983) Effects of light and elevated CO2 on ribulose-1,5-bisphosphate carboxylase activity and ribulose-1,5-bisphosphate level of soybean leaves. Plant Physiology 73, 729-734.

Vu, J.C.V., Allen, L.H. Jr and Bowes, G. (1989) Leaf ultrastructure, carbohydrates, and protein of soybeans grown under CO2 enrichment. Environmental Experimental Botany 29, 141-147.

Vu, J.C.V., Allen, L.H. Jr, Boote, K.J. and Bowes, G. (1997) Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant, Cell and Environment 20, 68-76.

Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment