Miracle Farm Blueprint

Organic Farming Manual

Get Instant Access

The global exchange rates of trace gases between the soils and the atmosphere are complicated, since the production and destruction processes involved are heteroge-nous. Even the same soils may be a source at one time and sink at another time of the year (Conrad 1996; Khalil and Rasmussen 2000).

Increased depositions of atmospheric NOx and NH3 may influence the exchange of the three main greenhouse gases - CO2, N2O, CH4-between biosphere and atmosphere. The net effect of anthropogenic nitrogen deposition on the net GHG budget is the resultant of complex interactions and ecosystem feedbacks, and is highly dependent on the local environmental conditions (van der Gon and Bleeker 2005; De Vries et al. 2007).

An additional mitigation of ~0.2 Pg C yr-1 could be achieved by 2030 by improved energy efficiency in agriculture through reduced fossil fuel use (Smith et al. 2007). There are 4.3 million harvester-threshers and 27.6 million tractors used for agricultural production in 2003 (FAOSTAT 2006). However, this is usually counted in the relevant user sector rather than in agriculture and so is not considered further here. Agricultural crops and residues are increasingly seen as sources of feedstock for energy industry to reduce fossil fuel, use (Paustian et al. 1998; Edmonds 2004; Cerri et al. 2004). These products can be burned directly, but can also be processed further to generate liquid fuels such as ethanol or diesel fuel. So, GHG emissions from agriculture could also be reduced in this way. The net benefit to atmospheric CO2, however, depends on energy used in growing and processing the bio-energy feedstock (Spatari et al. 2005). The competition for other land uses and the environmental impacts need to be considered when planning is made to use energy crops.

6.3 Conclusions

Crop fields are a dynamic component of the global carbon and nitrogen cycle. Rice field plays an important role in both CH4 and N2O emissions. N2O emissions will play an increasing role since the N fertilizer is the requisite for food production to meet the growing population. Agricultural fields show a significant potential for mitigating global greenhouse gas emissions while maintaining the crop yields.

Acknowledgments We are in debt to the Office of Science (BER), US Department of Energy (No. DE-FG02-04ER63913 and DE-FG02-08ER64515) for financial support.


Abao EB, Bronson KF, Wassmann R, Singh U (2000) Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions. Nutr Cycl Agroe-cosyst 58:131-139

Adhya TK, Bharati K, Mohanty SR, Mishra SR, Ramakrishnan B, Rao VR, Sethunathan N, Wassmann R (2000) CH4 emissions from rice fields at Cuttack, India. Nutr Cycl Agroecosyst 58:95105

Akiyama H, Yagi K, Yan X (2005) Direct N2O emissions from rice paddy fields: Summary of available data. Glob Biogeochem Cycl 19:GB1005. DOI:10.1029/2004GB002378 Allan W, Lowe DC, Gomez AJ, Struthers H, Brailsford GW (2005) Interannual variation of 13C in tropospheric methane: Implications for a possible atomic chlorine sink in the marine boundary layer. J Geophys Res 110: DOI:10.1029/2004JD005650 Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I -gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4:1461-1738 Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001) Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77-86 Bilek RS, Tyler SC, Sass RL, Fisher FM (1999) Differences in CH4 oxidation and pathways of production between rice cultivars deduced from measurements of CH4 flux and d13C of CH4 and CO2. Glob Biogeochem Cycl 13:1029-1044 Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265-277 Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathiere J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443 (7110):439-443

Bouwman AF, Boumans LJM, Batjes NH (2002a) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycl 16(4):1080. DOI:10.1029/2001GB001812 Bouwman AF, Boumans LJM, Batjes NH (2002b) Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob Biogeochem Cycl 16(4):1080. DOI:10.1029/2001GB001812 Bouwman AF, Van der Hoek KW, Olivier JGJ (1995) Uncertainties in the global source distribution of nitrous oxide. J Geophys Res 100:2785-2800 Breiling M, Hashimoto S, Sato Y, Ahamer G (2005) Rice related greenhouse gases in Japan, variations in scale and time and significance for Kyoto Protocol. Paddy Water Environ 3:39-46 Bronson KF, Neue HU, Singh U, Abao EB Jr (1997a) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, nitrogen and water management. J Am Soil Sci Soc 61:981-987 Bronson KF, Singh U, Neue HU, Abao EB Jr (1997b) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: II. Fallow period emissions. J Am Soil Sci Soc 61:988-993

Brown L, Syed B, Jarvis SC, Sneath RW, Phillips VR, Goulding KWT, Li C (2002) Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmos Environ 36:917-928 Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41:4032-4037

Cai Z, Mosier AR (2000) Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32:1537-1545

Cai Z, Tsuruta H, Gao M, Xu H, Wei CF (2003) Options for mitigating methane emission from a permanently flooded rice field. Glob Change Biol 9:37-45 Cai Z, Tsuruta H, Minami K (2000) Methane emissions from rice fields in China: Measurements and influencing factors. J Geophys Res 105 D13:17231-17242 Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7-14

Cerri CC, Bernoux M, Cerri CEP, Feller C (2004) Carbon cycling and sequestration opportunities in South America: The case of Brazil. Soil Use Manage 20:248-254 Chang C, Janzen HH, Cho CM, and Nakonechny EM (1998) Nitrous oxide emission through plants. Soil Sci Soci Am J 62:35-38 Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK (1997) Methane emission from rice:

Stable isotopes, diurnal variations, and CO2 exchange. Glob Biogeochem Cycl 11:15-27 Chen GX, Huang GH, Huang B, Yu KW, Wu J, Xu H (1997) Nitrous oxide and methane emissions from soil-plant systems. Nutr Cycl Agroecosys 49:41-45 Chen YH, Prinn RG (2006) Estimation of atmospheric methane emission between 19962001 using a 3-D global chemical transport model. J Geophys Res 111: D10307. DOI:10.1029/2005JD006058 Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A, Paustian K, Rosenberg N, Sampson N, Sauerbeck D, Zhao Q (1997) Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosys 49:221-228 Conrad R (1996) Soil Microorganisms as controllers of Atmospheric Trace Gases (H2, CO, CH4,

OCS, N2O, and NO). Microbiol Rev 60 (4):609-640 Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures:

A review and a proposal. Organic Geochem 36:739-752 Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Quarter J

Roy Meteorolog Soc 96:320-325 Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Austr J Soil Res 41:165-195 de Vries W, Butterbach-Bahl K, van der Gon HD, Oenema O (2007) Impact of atmospheric nitrogen deposition on the exchange of carbon dioxide, nitrous oxide and methane from European forests. In: Reay DS, Hewitt CN, Smith KA, Grace J (eds) Greenhouse Gas Sinks. CABI, Cambridge, MA, pp 249-283 Del Grosso SJ, Mosier AR, Parton WJ, Ojima DS (2005) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 83(1):9-24

Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala AE, Phongpan S (2000) General model for N2O and N2 gas emissions from soils due to denitrification. Global Biogeochem Cycle 14:1045-1060

Dentener F, Peters W, Krol M, van Weele M, Bergamaschi P, Lelieveld J (2003) Interannual variability and trend of CH4 lifetime as a measure for OH changes in the 1979-1993 time period. J Geophys Res 108(D15), 4442. DOI:10.1029/2002JD002916 Dentener FJ, Crutzen PJ (1994) A three-dimensional model of global ammonia cycle. J Atm Chem 19:331-369

Dlugokencky EJ, Houweling S, Bruhwiler L, Masarie KA, Lang PM, Miller JB, Tans PP (2003) Atmospheric methane levels off: Temporary pause or a new steady state. Geophys Res Lett 30. DOI:10.1029/2003GL018126 Dlugokencky EJ, Masarie KA, Lang PM, Tans PP (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393:447-450 Dobbie KE, Smith KA (2003) Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables. Glob Change Biol 9:204-218

Dubey SK, Singh JS (2000) Spatio-temporal variation and effect of urea fertilization on methan-

otrophs in a tropical dryland rice field. Soil Biol Biochem 32:521-526 Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesenek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: A 13C-labelling approach. New Phytol 175:29-35 Edmonds JA (2004) Climate change and energy technologies. Mitig Adapt Strat Global Change 9:391-416

Eller G, Frenzel P (2001) Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl Environ Microbiol 67(6):2395-2403. DOI: 10.1128/AEM.67.6.2395-2403.2001 FAO (2003) World Agriculture: Towards 2015/2030. An FAO Perspective. FAO, Rome, pp 97 FAOSTAT (2006) FAOSTAT Agricultural Data. Available at: <> Ferretti DF, Miller JB, White JWC, Lassey KR, Lowe DC, Etheridge DM (2006) Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmos Chem Phys Disc 6:5867-5875

Frankenberg C, Meirink JF, van Weele M, Platt U, Wagner T (2005) Assessing methane emission from global space-borne observation. Science 308:1010-1014 Freney JR (1997) Emission of nitrous oxide from soils used for agriculture. Nutr Cycl Agroecosys 49:1-6

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: Past, present, and future. Biogeochemistry 70:153-226 Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J 19:7580

Granli T, B0ckman OC (1994) Nitrous oxide from agriculture. Norwegian J Agric Sci Supplement No 12:128

Groot TT, van Bodegom P, Harren FJM, Meijer HAJ (2003) Quantification of methane oxidation in the rice rhizosphere using 13C-labelled methane. Biogeochemistry 64:355-372 Gulledge J, Doyle AP, Schimel JP (1997) Different NH4+-inhibition patterns of soil CH4 consumption—a result of distinct CH4-oxidizer populations across sites. Soil Biol Biochem 29:13-21

Hakata M, Takahashi M, Zumft W, Sakamoto A, and Morikawa H (2003) Conversion of the nitrate nitrogen and nitrogen dioxide to nitrous oxides in plants. Acta Biotechnol 23:249-257 Helgason BL, Janzen HH, Chantigny MH, Drury CF, Ellert BH, Gregorich EG, Lemke RL, Pattey E, Rochette P, Wagner-Riddle C (2005) Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agroecosystems. Nutr Cycl Agroecosys 71:87-99 Hirsch AI, Michalak AM, Bruhwiler LM, Peters W, Dlugokencky EJ, Tans PP (2006) Inverse modeling estimates of the global nitrous oxide surface flux from 1998-2001. Glob Biogeochem Cycl 20:GB1008. D0I:10.1029/2004GB002443 Hou AX, Chen GX, Wang ZP, Van Cleemput O, Patrick WH Jr (2000) Methane and nitrous oxide emissions from rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64:2180-2186

Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites EF, Harris N, Maskell K (eds) (1995) Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Press, Cambridge, UK Houweling S, Röckmann T, Aben I, Keppler, F, Krol M, Meirink JF, Dlugokencky EJ, Frankenberg C (2006) Atmospheric constraints on global emissions of methane from plants. Geophys Res Lett 33:L15821. D0I:10.1029/2006GL026162 Huang Y, Sass RL, Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Glob Change Biol 4:247-268 Huang Y, Zhang W, Zheng X, Li J, Yu Y (2004) Modeling methane emission from rice paddies with various agricultural practices. J Geophys Res 109:D08113. DOI 10.1029/2003JD004401 Hymus G, Valentini R (2007) Terrestrial vegetation as a carbon dioxide sink. In: Reay DS, Hewitt

CN, Smith KA, Grace J (eds) Greenhouse Gas Sinks. CABI, Cambridge, MA, pp 11-30 IPCC (2007) Climate Change 2007 - The Physical Science Basis Contribution of Working Group

I to the Fourth Assessment Report of the IPCC. Cambridge University Press, New York Jackson LE, Calderon FJ, Steenwerth KL, Scow KM, Rolston DE (2003) Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geo-derma 114 (3-4):305-317 Janzen HH (2004) Carbon cycling in earth systems - a soil science perspective. Agric Ecosys Environ 104:399-417

Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187-191 Khalil MAK (1992) A statistical method for estimating uncertainties in the total global budgets of atmospheric trace gases. J Environ Sci Hlth A27(3):755-770 Khalil MAK, Butenhoff CL, Rasmussen RA (2007) Atmospheric methane: Trends and cycles of sources and sinks. Environ Sci Technol 41(7):2131-2137 Khalil MAK, Rasmussen RA (1992) The Global Sources of Nitrous Oxide. J Geophys Res 97(D13):14651-14660

Khalil MAK, Rasmussen RA (2000) Soil-atmosphere exchange of radiatively and chemically active gases. Environ Sci Pollut Res 7(2):79-82 Khalil MAK, Rasmussen RA, Shearer MJ (1998a) Effects of Production and Oxidation Processes on Methane Emissions from Rice Fields. J Geophys Res 103(D19):25233-25239 Khalil MAK, Rasmussen RA, Shearer MJ (2002) Atmospheric nitrous oxide: Patterns of global change during recent decades and centuries. Chemosphere 47:807-821 Khalil MAK, Rasmussen RA, Shearer MJ, Chen ZL, Yao H, Yang J (1998b) Emissions of methane, nitrous oxide, and other trace gases from rice fields in China. J Geophys Res 103(D19):25241-25250

Khalil MAK, Rasmussen RA, Shearer MJ, Dalluge RW, Ren LX, Duan CL (1998c) Measurements of methane from rice fields in China. J Geophys Res 103(D19):25181-25210 Khalil MAK, Rasmussen RA, Shearer MJ, Dalluge RW, Ren LX, Duan CL (1998d) Factors Affecting Methane Emissions from Rice Fields. J Geophys Res 103(D19):25219-25231 Khalil MAK, Shearer MJ (1993) Sources of methane: An overview. In: Khalil MAK (ed) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series Vol I 13, Springer-Verlag, Berlin, Germany, pp 168-179

Khalil MAK, Shearer MJ (2006) Decreasing emissions of methane from rice agriculture. In: Soliva CR, Takahashi J, Kreuzer M (eds) Greenhouse Gases and Animal Agriculture: An Update. International Congress Series 1293. Elsevier, The Netherlands, pp 33-41 Kim KR, Craig H (1993) Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: A global perspective. Science 262:1855-1857 Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Function Plant Biol 33:521-530 Kroeze C, Bouwman L, Slomp CP (2007) Sinks for nitrous oxide at the earth's surface. In: Reay DS, Hewitt CN, Smith KA, Grace J (eds) Greenhouse Gas Sinks. CABI, Cambridge, MA, pp 227-242

Kroeze C, Dumont E, Seitzinger SP (2005) New estimates of global emissions of N2O from rivers and estuaries. Environ Sci 2:159-165 Kroeze C, Mosier A, Bouwman L (1999) Closing the global N2O budget: A retrospective analysis

1500-1994. Glob Biogeochem Cycl 13(1):1-8 Kriiger M, Eller G, Conrad R, Frenzel P (2002) Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Glob Change Biol 8 (3): 265-280. Lassey KR, Lowe DC, Manning MR (2000) The trend in atmospheric methane 813C and implications for isotopic constraints on the global methane budget. Glob Biogeochem Cycl 14:41-49 Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change 72:321-338

Li C, Frolking S, Frolking TA (1992a) A model of nitrous oxide evolution from soil driven rainfall events I. Model structure and sensitivity. J Geophys Res 97:9759-9776 Li C, Frolking S, Frolking TA (1992b) A model of nitrous oxide evolution from soil driven rainfall events II. Model applications. J Geophys Res 97:9777-9783 Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Glob Biogoechem Cycle 18:GB1043 Li C, Qiu J, Frolking S, Xiao X, Salas W, Moore B III, Boles S, Huang Y, Sass R (2002) Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophys Res Lett 29: DOI:10.1029/2002GL015370 Lindau CW, Patrick WH Jr, Deluane RD, Reddy KR (1990) Rate of accumulation and emission of

N2, N2O and CH4 from flooded rice soil. Plant Soil 129:269-276 Matthews R, Wassmann R (2003) Modelling the impacts of climate change and methane emission reductions on rice production: A review. Eur J Agron 19:573-598 McSwiney CP, Robertson GP (2005) Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob Change Biol 11:17121719

Mikaloff Fletcher SE, Tans PP, Bruhwiler LM, Miller JB, Heimann M (2004) CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Glob Biogeochem Cycl 18, GB4004. DOI:10.1029/2004GB002223 Minami K, Fukushi S (1984) Methods for measuring N2O flux from water surface and N2O dissolved in water from agricultural land. Soil Sci Plant Nutr 30:495-505 Mitra S, Wassmann R, Jain MC, Pathak H (2002) Properties of rice soils affecting methane production potentials: 1. Temporal patterns and diagnostic procedures. Nutr Cycl Agroecosyst 64:169-182

Miura Y, Watanabe A, Murase J, Kimura M (1992) Methane production and its fate in paddy fields. 2. Oxidation of methane and its coupled ferric oxide reduction in subsoil. Soil Sci Plant Nutr 38:673-679

Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosys Environ 112:163-170

Morgan CG, Allen M, Liang MC, Shia RL, Blake GA, Yung YL (2004) Isotopic fractionation of nitrous oxide in the stratosphere: Comparison between model and observations. J Geophys Res 109, D04305. D01:10.1029/2003JD003402 Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N20 budget: Nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyt 52:225-248

Mosier AR, Mohanty SK, Bhadrachalam A, Chakravorti SP (1990) Evolution of dinitrogen and nitrous oxide from the soil to the atmosphere through rice plants. Biol Fertil Soils 9:61-67 Müller C (2003) Plants affect the in situ N20 emissions of a temperature grassland ecosystem. J

Plant Nutr Soil Sci 166:771-773 Müller C, Stevens RJ, Laughlin RJ, Jager H-J (2004) Microbial processes and the site of N20

production in a temperate grassland soil. Soil Biol Biochem 36:453-461 Nakagawa F, Yoshida N, Sugimoto A, Wada E, Yoshioka T, Ueda S, Vijarnsorn P (2002) Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in Southern Thailand. Biogeochemistry 61:1-19 Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma VVSS, D'Souza W, Joseph S, George MD (2000) Increased marine production of N20 due to intensifying anoxia on the Indian continental shelf. Nature 408(6810):346-349 Neill C, Steudler PA, Garcia-Montiel DC, Melillo JM, Feigl BJ, Piccolo MC, Cerri CC (2005) Rates and controls of nitrous oxide and nitric oxide emissions following conversion of forest to pasture in Rondonia. Nutr Cycl Agroecosys 71:1-15 Nevison CD, Butler JH, Elkins JW (2003) Global distribution of N20 and the N20 /AOU yield in the subsurface ocean. Glob Biogeochem Cycl 17(4), 1119. D0I:10.1029/2003GB002068 Nevison CD, Lueker T, Weiss RF (2004) Quantifying the nitrous oxide source from coastal upwelling. Glob Biogeochem Cycl 18, GB1018. D0I:10.1029/2003GB002110 Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:5165

Olivier JGJ, Bouwman AF, Van Der Hoek KW, Berdowski JJM (1998) Global air emission inventories for anthropogenic sources of NOx, NH3 and N20 in 1990. Environ. Pollut. 102(1, S1):135-148

Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21:423-424 Paustian K, Cole CV, Sauerbeck D, Sampson N (1998) C02 mitigation by agriculture: An overview. Climatic Change 40(1):135-162 Prinn R, Cunnold D, Rasmussen R, Simmonds P, Alyea F, Crawford A, Fraser P, Rosen R (1990) Atmospheric emissions and trends of nitrous-oxide deduced from 10 years of ALE-gauge data. J Geophys Res 95(D11):18369-18385 Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIR, Schouten S, Damste JSS, 0p den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918-921 Reay DS, Smith KA, Edwards AC (2003) Nitrous oxide emission from agricultural drainage waters. Glob Change Biol 9:195-203 Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922-1925 Rochette P, Janzen HH (2005) Towards a revised coefficient for estimating N20 emissions from legumes. Nutr Cycl Agroecosyst 73:171-179 Sass RL, Fisher FM, Harcombe PA, Turner FT (1990) Methane production and emission in a Texas rice field. Glob Biogeochem Cycl 4:47-68 Schütz H, Seiler W, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33-53 Smart DR, Bloom AJ (2001) Wheat leaves emit nitrous oxide during nitrate assimilation. P Natl Acad Sci USA 98:7875-7878

Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil

Use Manage 20:255-263 Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl BA, Ogle SM, O'Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider UA, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6-28 Spatari S, Zhang Y, Maclean HL (2005) Life cycle assessment of switchgrass- and corn stover-

derived ethanol-fueled automobiles. Environ Sci Technol 39:9750-9758 Stevens RJ, Laughlin RJ, Malone JP (1998) Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem 30(8-9):1119-1126 SuratnoW, Murdiyarso D, Suratmo FG, Anas I, Saeni MS, Rambe A (1998) Nitrous oxide flux from irrigated rice fields in West Java. Environ Pollut 102 S1:159-166 Tsuruta H, Kanda K, Hirose T (1997) Nitrous oxide emission from a rice paddy field in Japan.

Nutr Cycl Agroecosyst 49:51-58 Tyler SC, Bilek RS, Sass RL, Fisher FM (1997) Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, 813C, and 8D of CH4. Glob Bio-geochem Cycl 11:323-348 US-EPA (2006) Global Anthropogenic Non- CO2 Greenhouse Gas Emissions: 1990-2020. United States Environmental Protection Agency, EPA 430-R-06-003, Washington, DC. <> Vallejo A, Diez JA, Lopez-Valdivia LM, Gasco A, Jimenez C (2001) Nitrous oxide emission and denitrification nitrogen losses from soils treated with isobutylenediurea and urea plus dicyan-diamide. Biol Fertil Soils 34(4):248-257 van Aardenne JA, Dentener FJ, Olivier JGJ, Klein Goldewijk CGM, Lelieveld J (2001) A 1°x1c resolution data set of historical anthropogenic trace gas emissions for the period 1890-1990. Global Biogeochem. Cycles 15(4):909-928 van Cleemput O (1998) Subsoils: Chemo- and biological denitrification, N2O and N2 emissions.

Nutr Cycl Agroecosyst 52:187-194 van der Gon HD, Bleeker A (2005) Indirect N2O emission due to atmospheric N deposition for the

Netherlands. Atmos Environ 39 (32):5827-5838 van der Gon HD, Neue HU (1996) Oxidation of methane in the rhizosphere of rice plants. Biol

Fert Soils 22(4):359-366 Veldkamp E, Keller M (1997) Nitrogen oxide emissions from a banana plantation in the humid tropics. J Geophys Res 102:15889-15898 Velthof GL, Oenema O, Postma R, Van Beusichem ML (1996) Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutr Cycl Agroecosyst 46(3):257-267 Wang B, Neue H, Samonte H (1997) Effect of cultivar difference on methane emissions. Agric

Ecosys Environ 62:31-40 Warneck P (2000) Chemistry of the Natural Atmosphere. Academic Press, San Diego, p 923 Wassmann R, Lantin RS, Neue HU, Buendia LV, Corton TM, Lu Y (2000) Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr Cycl Agroecosys 58:23-36 Webster EA, Hopkins DW (1996) Nitrogen and oxygen isotope ratios of nitrous oxide emitted from soil and produced by nitrifying and denitrifying bacteria. Biol Fertil Soils 22:326-330 Xing G (1998) N2O emission from cropland in China. Nutr Cycl Agroecosyst 52:249-254 Xing G, Shi L, Shen G, Du L, Xiong Z (2002) Nitrous oxide emissions from paddy soil in three rice-based cropping systems in China. Nutr Cycl Agroecosyst 64:135-143 Xiong Z, Freney JR, Mosier AR, Zhu ZL, Lee Y, Yagi K (2008) Impacts of population growth, changing food preferences and agricultural practices on the nitrogen cycle in East Asia. Nutr Cycl Agroecosyst. DOI: 10.1007/s10705-007-9132-4 Xiong Z, Xie X, Xing G, Zhu Z, Butenhoff C (2006a) Measurements of nitrous oxide emissions from vegetable production in China. Atmospher Environ 40: 2225-2234. DOI: 10.1016/j. atmosenv.2005.12.008

Xiong Z, Xing G, Tsuruta H, Shen G, Shi S, Du L (2002a) Measurement of nitrous oxide emissions from two rice-based cropping systems in China. Nutr Cycl Agroecosyst 64:125-133 Xiong Z, Xing G, Tsuruta H, Shen G, Shi S, Du L (2002b) Field study on nitrous oxide emissions from upland cropping systems in China. Soil Sci Plant Nutrition 48:539-546 Xiong Z, Xing G, Zhu Z (2006b) Water dissolved nitrous oxide from paddy agroecosystem in

China. Geoderma 136: 524-532. DOI: 10.1016/j.geoderma.2006.04.010 Xiong Z, Xing G, Zhu Z (2007) Nitrous oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere 17(2):146-155 Xu H, Cai ZC, Jia ZJ, Tsuruta H (2000) Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period. Nutr Cycl Agroecosyst 58:327-332

Xu H, Cai ZC, Tsuruta H (2003) Soil moisture between rice-growing seasons affects methane emission, production, and oxidation. Soil Sci Soc Am J 67:1147-1157 Xu H, Huang B, Zhang X, Han S, Huang G, Chen G (2001) Above-ground vertical concentration profiles of nitrous oxide within coniferous-deciduous forests. Chemosphere - Global Change Sci 3:145-146

Xu H, Xing G, Cai Z, Tsuruta H (1997) Nitrous oxide emissions from three rice paddy fields in

China. Nutr Cycl Agroecosyst 49:23-28 Xu Z, Zheng X, Wang Y, Han S, Huang Y, Zhu J, Butterbach-Bahl K (2004) Effects of elevated CO2 and N fertilization on CH4 emissions from paddy rice fields. Global Biogechem Cycles 18, GB3009. DOI:10.1029/2004GB002233 Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Global Biogeochem Cyc 10:255-267

Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nut Cycl Agroecosyst 49:213-220 Yan X, Ohara T, Akimoto H (2003) Development of region-specific emission factors and estimation of methane emission from rice field in East, Southeast and South Asian countries. Glob Change Biol 9:237-254

Yan X, Shi S, Du L, Xing G (2000) Pathways of N2O emission from rice paddy soil. Soil Biol Biochem 32:437-440

Yan X, Yagi K, Akiyama H, Akimoto H (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Glob Change Biol 11:1131-1141 Yoshida N (1988) 15N-depleted N2O as a product of nitrification. Nature 335: 528-529 Yu K, Wang Z, Chen G (1997) Nitrous oxide and methane transport through rice plants. Biol Fertil Soils 24:341-343

Zhang L, Boeckx P, Chen G, Van Cleemput O (2000) Nitrous oxide emission from herbicide-

treated soybean. Biol Fertil Soils 32:173-176 Zheng X, Han S, Huang Y, Wang Y, Wang M (2004) Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochem Cycles 18(2): GB2018. DOI:10.1029/2003GB002167 Zheng X, Wang M, Wang Y, Shen R, Gou J, Li J, Jin J, Li L (2000) Impacts of soil moisture on nitrous oxide emission from crop- lands: A case study on the rice-based agro-ecosystem in Southeast China. Chemosphere-Global Change Sci 2:207-224 Zheng X, Wang M, Wang Y, Shen R, Shangguan X, Heyer J, Kogge M, Papen H, Jin J, Li L (1997) N2O and CH4 emission from Rice Paddies in Southeast China. Chinese J Atmosph Sci 21(2):167-174

Zhu Z, Chen D (2002) Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosyst 63:117-127 Zhu Z, Xiong Z, Xing G (2005) Impacts of population growth and economic development on the nitrogen cycle in Asia. Sci China (Ser C, Life Sci) 48:729-737 Zou J, Huang Y, Sun W, Zheng X, Wang Y (2005) Contribution of plants to N2O emissions in soil-winter wheat ecosystem: Pot and field experiments. Plant Soil 269 (1-2):205-211

Was this article helpful?

0 0
Renewable Energy Eco Friendly

Renewable Energy Eco Friendly

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable.

Get My Free Ebook

Post a comment