Invasions And Extinctions On Islands

Patterns of species invasions and extinctions have been well documented across a wide variety of islands and for a number of taxonomic groups (Chown et al., 1998; Sax et al., 2002; Sax and Gaines, 2003; Blackburn et al., 2004). In general, many species of plants, vertebrates, and invertebrates have been introduced to islands (Eldredge and Miller, 1995; Chown et al., 1998; Sax et al., 2002). Many of these introduced species have become naturalized, i.e., they have formed self-supporting populations capable of perpetuating themselves. Islands have also lost many native species; among vertebrates, extinctions have been greatest for bird species, largely because most other vertebrate groups are relatively depauperate on islands (Lomolino et al., 2006). In contrast to birds, plants have generally suffered few extinctions on islands (James, 1995; Sax et al., 2002). For example, in New Zealand, 38 of 91 native land bird species have become extinct, whereas only 3 of >2,000 native plant species have become extinct (Sax et al., 2002). Overall, these patterns of extinction and naturalization have led to large changes in net species richness on islands around the world. Bird richness on most oceanic islands has remained largely unchanged, because the number of extinctions has been largely matched by the number of exotic birds that have become naturalized (Sax et al., 2002). This relative consistency in net bird richness may be important in understanding and predicting future extinctions, but is not a ''good'' thing from a conservation perspective, because it means that many unique endemic species have been lost and replaced by more cosmopolitan species from mainlands (McKinney and Lockwood, 1999). In contrast to birds, mammal richness has increased dramatically, particularly on oceanic islands, which have few native mammal species (Blackburn et al., 2004). Freshwater fish richness has also increased, because few native fishes have gone extinct (at least so far), whereas many exotic species have become naturalized (Sax and Gaines, 2003). Invertebrate richness may also have increased, because many invertebrates have become naturalized on islands, e.g., >2,500 species on Hawaii alone (Eldredge and Miller, 1995), but records of extinction are less certain, so it is difficult to know how net richness has changed without additional investigation. Finally, vascular plants have seen dramatic increases in richness across both continental and oceanic

92 / Dov F. Sax and Steven D. Gaines islands, because many exotics have become naturalized, whereas few native species have gone extinct (Sax and Gaines, 2006).

Increases in plant richness show several distinct patterns. First, comparisons between mainlands and islands and among island types (landbridge versus oceanic) show repeatable quantitative differences; mainland areas have increased in plant species richness least, land-bridge islands have increased more, and oceanic islands have increased the most. For example, counties in California have increased on average by 17%, the California Channel Islands have increased by 44%, and oceanic islands have increased by 104% in richness (Sax and Gaines, 2006). Second, increases in richness on some islands have been sufficiently large that these isolated systems now approximate the richness of continental areas. For example, the addition of naturalized plants to Hawaii has pushed its net plant richness up to levels typical for an area of equal size in mainland Mexico (Sax and Gaines, 2006). Third, the average increase in richness observed across oceanic islands is highly regular, with most islands showing a strikingly consistent doubling in net plant richness (Sax et al., 2002).

The doubling in plant richness on oceanic islands is due to a tightly correlated one-to-one relationship between native and naturalized plant species, with 96% of the variation in naturalized plant richness explained solely by native plant richness (Fig. 5.2). Other island characteristics indi-

ro c


Log number of extant native species

FIGURE 5.2 Native and naturalized plant richness are highly correlated across oceanic islands. The log number of extant native plant species explains 96% of the variation in the log number of naturalized plant species. See Appendix Table 5A.1 for a list of islands and richness values.

vidually explain far less variation in the richness of naturalized species. For example, human population size (79%), island area (71%), island maximum elevation (49%), and date of European settlement (31%) explain significant amounts of the variation but account for far less than that of native species richness. Indeed, even a multiple regression analysis with these and other island characteristics generates a model that accounts for less of the variation in naturalized species richness than is explained by native richness alone (see Methods). It is unclear why native plant richness is such a good predictor of naturalized plant richness, but the strength of the relationship suggests that it may provide clues into understanding how richness patterns are likely to change in the future.

Plant invasion patterns provide several lines of evidence that suggest islands might be ''filling-up'' or becoming ''saturated'' with species. First, the most species-poor islands (oceanic as opposed to continental) have increased in plant richness the most. Second, many islands are now coming close to matching the species richness levels of continental environments. Third, patterns of increase are highly consistent among oceanic islands, where a close to perfect doubling in species richness of plants has occurred. This doubling might represent a new saturation point for species richness. If this has occurred and a saturation point has been reached, then it would be valuable to know the mechanism by which it has done so, e.g., whether it arose from colonization-based or extinction-based saturation. Alternatively, it would be valuable to know whether no saturation point has been reached. Distinguishing among these alternatives is critical, because they paint very different pictures for the future for plant biodiversity on islands.

0 0

Post a comment