In an eloquent requiem for nature, Terborgh (1999) has argued that, in the face of a globally burgeoning human population, the only credible prospect for preserving substantial biodiversity will be for governments [or other entities such as nongovernmental organizations (NGOs)] to set aside extensive nature sanctuaries and then actively protect those parklands in perpetuity. Many countries, including the United States, have long-established systems of National Parks that usually feature special landscapes and geological formations (such as the picturesque rocky shores of Acadia Park in Maine, the majestic mountains of Glacier Park in Montana, or the special volcanic features of Yellowstone Park in Wyoming). A growing realization is that analogous and extensive reserve systems across the globe also are urgently needed to offer explicit protection for the biological world's special features, such as endangered species, distinctive biotic communities and ecosystems, and biodiversity "hotspots" (Myers, 1990; Reid, 1998).

Accordingly, many scientists and conservation organizations are actively engaged in identifying threatened sites around the world where exceptional concentrations of rare or endemic species still exist and where conservation efforts might therefore be focused to best effect (Prendergast et al., 1993; Myers et al., 2000; Williams et al., 1996). For example, it has been estimated that as many as 44% of vascular plant species and 35% of all vertebrate species (exclusive of fishes) are confined to 25 biodiversity hotspots that comprise only 1.4% of Earth's land surface, and that for the cost of perhaps as little as $500 million annually, a biotic reserve system centered on such treasure-rich locations could be a ''silver bullet'' for biodiversity protection (Myers et al., 2000). A related suggestion is that sites meriting high priority for protection should display exceptional concentrations of phylogenetically distinctive taxa (Vane-Wright et al., 1991; Faith, 1992a; Krajewski, 1994; Humphries et al., 1995; Crozier, 1997), the rationale being that organismal lineages with long-independent evolutionary histories contain disproportionately large fractions of the planet's total extant genomic biodiversity (May, 1990b, 1994; Avise, 2005).

These various suggestions for biotic reserves need not be at odds. Indeed, given the dire prospects for global biodiversity in the ongoing extinction crisis and the total inadequacy to date of commensurate responses by most governments, the more natural parklands that societies can be persuaded to sequester under any reasonable biological motivation, the better. Furthermore, the parkland effort need not be confined to governmental initiatives, as well illustrated by the welcome activities of NGOs such as the Nature Conservancy and Conservation International. A related hope is that philanthropists and profit industries also will become increasingly persuaded of the urgency to protect remaining nature, if for no other reason than in their own enlightened financial (as well as ethical) self-interest.

To pick just one such example of the potential for private involvement, an inspirational business venture (''IQ RESORTS by PANGEA WORLD'') spearheaded by Hana Ayala (Lempinen, 2006) aims to partner responsible and forward-thinking members of the hotel/tourism industry with world-class scientists in a global vision to promote science and protect biodiversity as an integral part of the business plan (which would include the acquisition and preservation of extensive nature reserves in key locations, as well as the generation of new funding mechanisms for the biodiversity sciences). Three underlying premises of this initiative are as follows: (i) knowledge mobilized through scientific research is the ultimate inexhaustible resource; (ii) the world's most spectacular and biodiverse landscapes and seascapes are primary reservoirs for scientific knowledge that in turn can promote long-term conservation efforts in pragmatically effective and economically sustainable ways; and (iii) the international hotel industry—with its collective global ambition and growing emphasis on mind-stimulating travel experiences—has perhaps more financial interest, capacity, and incentive than any other private industry to partner with science in charting and protecting the world's premier biological heritage reserves. The PANGEA initiative aims to go well beyond traditional nature-tourism ventures by envisioning a global archipelago of interconnected ''wonder sites'' where the scientific study and preservation of nature are the explicit and formal motivation for linking sustainable economics with science.

The perspectives and data of ecological and evolutionary genetics can contribute to parkland conservation efforts in many ways. For example, they can help to identify species and biodiversity hotspots, especially for otherwise poorly known taxonomic groups. They can vastly improve our understanding of phylogenetic relationships of numerous taxa within and among the extant regional biotas that conservationists might seek to protect (Avise, 2004; Purvis et al., 2005b; Godfray, 2007). Finally, they can help to illuminate many management-relevant aspects of the biology and natural history of particular species that warrant special conservation concern.

Most of the general sentiments summarized above (a notable exception perhaps being the PANGEA WORLD initiative) reflect conventional wisdoms, at least among many biologists. Here I suggest how phylogeo-graphic perspectives might offer an additional opportunity in parkland motivation that is less widely appreciated. Phylogeography is a relatively young biological field that deals with descriptions and interpretations of the spatial distributions of genealogical lineages, especially within and among closely related species (Avise, 2000). An emerging phylogeographic generality is that many, if not most, extant taxonomic species are spatially subdivided into small numbers of highly distinctive historical units (Avise and Walker, 1999).

Many of these distinctive genealogical entities [sometimes referred to as evolutionarily significant units (ESUs)] (Ryder, 1986; Moritz, 1994) began diverging from one another in unglaciated biological refugia of the Pleistocene Epoch or earlier (Klicka and Zink, 1997; Avise and Walker, 1998; Avise et al., 1998). In Europe, for example, extant populations of many plant and animal species bear the genomic footprints of phylogeographic differentiation in several disjunct ice-free areas (notably the Iberian Peninsula, the Italian Peninsula, and the Balkans) typically followed by post-Pleistocene dispersal from one or more of these ancestral homelands (Hewitt, 1996; Schmitt, 2007; Weiss and Ferrand, 2007). Likewise, key genealogical separations presumably tracing back to historical refugia distinguish regional populations of many species in different sections of the eastern United States (Avise, 1992; Soltis et al., 2006). Qualitatively similar patterns also

292 / John C. Avise have been uncovered in comparative phylogeographic surveys of regional biotas in several other parts of the world (Bermingham and Moritz, 1998; Avise, 2000). In at least several cases, the current boundaries between ESUs tend to be spatially concordant with transition zones between zoo-geographic provinces as identified by more traditional evidence (such as species' ranges and faunal distributions). Such concordance suggests that similar types of evolutionary forces [perhaps operating as detailed in Avise (2000)] may be responsible for both of these seemingly unrelated biogeographic phenomena.

Better Business Budget Planning

Better Business Budget Planning

What Is The First Essential Step To Be Taken Before Starting Your Own Business? Enter Effective Business Budget Planning Learn All The Crucial Steps Necessary To Plan Your Budget For A Successful Business Career Today! Being The Next Big Entrepreneur Of The Century Has Never Been So Possible, download To Discover All The Secrets!

Get My Free Ebook

Post a comment