Density Plumes Generated by External Inputs

River Inflows

The density differences required to drive density plumes originate from processes that generate horizontal or vertical gradients in water properties. An obvious example is river inflow (Figure 3).

River water usually contains an increased load of suspended particles and has a different temperature and salinity than the lake water. Hence, river inflow is commonly associated with density plumes propagating from the river mouth to larger depths. The kinetic energy associated with the inflow of the river water is usually rapidly dissipated and the horizontal density gradients resulting from the different densities of river water and lake water are the main cause of river induced transport of water masses in lakes. During summer, the density plumes induced by river inflow typically intrude at some depth within the thermo-cline of freshwater lakes. Because of the large temperature gradients in the thermocline, water densities change significantly within a rather narrow depth range in the lake. Hence, the probability that the density of the plume water agrees with the density in the water column of the lake is especially large within the thermocline. This fact explains that river water typically intrudes in this depth range. The depth reached by the density plumes varies during the course of the year since water properties and hence the density of lake and river water changes seasonally (Figure 3). Density currents containing a high load of

Lütschine

Aare

Lütschine

Aare

Lütschine

Aare

2 4 6 8 10 12 Distance from Lutschine mouth (km)

Figure 3 Density currents generated by river inflow. (a) Water of river Aare indicated by high turbidity intruding near the surface of Lake Brienz. The sharp boundaries of this surface plume indicate plunging of river water to larger depth. (b, c) Suspended particle distribution inferred from light transmission measurements in a longitudinal cross-section of Lake Brienz measured in February (b) and October (c). The particle distributions suggest that, in February water introduced by the river Aare (inflow on the right-hand side) sinks as density plume along the lake bottom towards largest depth (b). In October river Aare and river Lutchine both intrude at intermediate depth (c). (Figure 3(a) was provided by Ueli Ochsenbein; Figure 3(b) and (c) are redrawn from Figure 7(a) and 7(d) in Finger D, Schmid M, and Wuest A (2006). Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes. Water Resources Research 42, W08429, doi:10.1029/2005WR004751. Reproduced/modified by permission of American Geophysical Union.

Lütschine

Aare

2 4 6 8 10 12 Distance from Lutschine mouth (km) (c)

2 4 6 8 10 12 Distance from Lutschine mouth (km)

2 4 6 8 10 12 Distance from Lutschine mouth (km) (c)

Figure 3 Density currents generated by river inflow. (a) Water of river Aare indicated by high turbidity intruding near the surface of Lake Brienz. The sharp boundaries of this surface plume indicate plunging of river water to larger depth. (b, c) Suspended particle distribution inferred from light transmission measurements in a longitudinal cross-section of Lake Brienz measured in February (b) and October (c). The particle distributions suggest that, in February water introduced by the river Aare (inflow on the right-hand side) sinks as density plume along the lake bottom towards largest depth (b). In October river Aare and river Lutchine both intrude at intermediate depth (c). (Figure 3(a) was provided by Ueli Ochsenbein; Figure 3(b) and (c) are redrawn from Figure 7(a) and 7(d) in Finger D, Schmid M, and Wuest A (2006). Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes. Water Resources Research 42, W08429, doi:10.1029/2005WR004751. Reproduced/modified by permission of American Geophysical Union.

suspended particles are often called turbidity currents. Sedimentation of particles out of intrusions resulting from turbidity currents can reduce the density of the intruding water sufficiently that the depth of the intrusions becomes shallower over time. Density currents induced by river inflows usually propagate along the sloping bottom boundary before the water intrudes laterally. If the concentrations of solutes and particles are very different between the river and the lake water, the plumes can propagate down to the deepest parts of the lake. In cases where the sinking water is confined to underwater channels, e.g., density plumes propagating down the Kukui Canyon of the Selenga delta in Lake Baikal, entrain-ment of ambient water is reduced, and the density plume can propagate over a depth range of more than 1000 m down to 1640 m (see also Figure 4(a)).

Interbasin Exchange

River inflows not only result in localized density plumes propagating from the river mouth to larger depths but also can generate subtle large scale gradients in water properties that affect the horizontal density distribution on a basin scale. These small density gradients on a large spatial scale may contribute to the generation of density currents far from the river inflow that occur especially in the vicinity of sills separating sub-basins of the lake. This mechanism is exemplified in Figure 4 for two lakes of different size, Lake Baikal and Lake Lucerne, that both are structured into several sub-basins separated by sills.

In both lakes large scale horizontal salinity gradients are generated by river inflows introducing water with different ion concentrations into the different sub-basins. In the case of Lake Baikal, the River Selenga introduces more saline water into the Central Basin than the Upper Angara River introduces into the Northern Basin. In case of Lake Lucerne, the River Sarner Aa introduces more saline water into the sub-basin Lake Alpnach than the River Reuss introduces into the sub-basin Lake Uri. Because of the salinity gradients, the density of the water in the different sub-basins differs if temperature is the same. In Lake Lucerne the densest water can be found in sub-basin Lake Alpnach when winter cooling reduces surface water temperature to °C. Horizontal transport of the dense water from Lake Alpnach to the sub-basin Lake Vitznau across the sill separating the two sub-basins induces a density current renewing the deep-water of sub-basin Lake Vitznau (Figure 4(b)). The density plume causes upwelling of cold dense water within Lake Vitznau. Horizontal transport of water across the sills between sub-basin results into a cascading of density driven transport within all a. ®

Relative distance (km)

Relative distance (km)

Figure 4 Density currents generated at sills between sub-basins. Vertical transects of salinity in Lake Baikal (a) and in Lake Lucerne (b). In both lakes the horizontal gradients in salinity are generated by river inflows introducing water with different ion concentration. The salinity distributions suggest that density currents are not only generated directly by river inflow as is the case in Lake Baikal at the Selenga delta (see panel a) but that density currents also occur in both lakes at the sills between sub-basins most likely driven by horizontal transport across the sill. Contours depict salinity in mg kg-1. Figure 4(a): redrawn from Kipfer R and Peeters F (2000). Speculation on consequences of changes in the deep water renewal in Lake Baikal, in K Minoura (ed.) Lake Baikal a mirror in time and space for understanding global change processes, pp. 273-280. Amsterdam, Netherlands: Elsevier. Figure 4(b): drawn using data from Aeschbach-Hertig W, Kipfer R, Hofer M, Imboden DM, and Baur H (1996) Density-driven exchange between the basins of Lake Lucerne (Switzerland) traced with the 3H-3He method. Limnology and Oceanography 41: 707-721.

sub-basins (Figure 4(b)). A similar process is operating in the different basins of Lake Baikal (Figure 4(a)). Prerequisite of these density currents generated at sills between sub-basins is (1) the structuring of the lake basin into sub-basin that prevents homogenization of water properties by horizontal mixing and (2) a heterogeneous input of water properties, as e.g., the salinity by the river inflows in Figure 4.

Subsurface Inflows

Besides the input from rivers, external water sources derived from groundwater inflows and from hydrothermal vents can generate density currents depending on the depths at which the inflows are located. Groundwater and hydrothermal water is usually highly enriched in ions and thus can cause salinity driven density plumes. Groundwater inflows into lakes are common in artificial lakes such as mining lakes or gravel-pit lakes or occur in karstic environments. Density currents due to hydrothermal vents have been reported for instance in Lake Baikal, where hydrothermal water is introduced in Frohliha Bay at a depth of 200-400 m and propagates as a bottom following density current down to 1400 m depth. In this specific case the salinity of the hydrothermal water is sufficiently large to compensate the decrease in density due to the increased water temperatures in the hydrothermal water.

Project Earth Conservation

Project Earth Conservation

Get All The Support And Guidance You Need To Be A Success At Helping Save The Earth. This Book Is One Of The Most Valuable Resources In The World When It Comes To How To Recycle to Create a Better Future for Our Children.

Get My Free Ebook


Post a comment