Fume

• multiple chamber;

• auger combustor;

Each of these incinerators has advantages and disadvantages that must be evaluated before final process selection. Figure 14 shows a typical flow diagram of an incineration system incorporating any of these incinerators [11]. Residence times and operating temperature ranges for the various types of incinerators are listed in Table 10 [54]. A matrix matching waste types against incineration equipment is presented in Table 11

[54]. This matrix offers a general guideline for using different types of incinerators for different wastes (e.g., solid, liquid, and fume).

In addition to using the proper type of incinerator and operating conditions to destroy the pesticide wastes, the incineration system must be equipped with the proper emission controls to ensure that toxic gases and particulates do not escape into the environment

[55]. The ash (which may contain hazardous substances) must be properly disposed. Many wet collection systems (scrubbers) can be used for removing gaseous pollutants. The various types of scrubbers available include venturi, plate, packed tower, fiber bed, spray tower, centrifugal, moving bed, wet cyclone, self-induced spray, and jet. Dry collection equipment is available for the removal of particulate pollutants and includes settling chambers, baffle chambers, skimming chambers, dry cyclones, impingement collectors, electrostatic precipitators, and fabric filters. The incinerator ash, scrubber water, and particulate collection can then be landfilled, chemically treated, or otherwise processed for disposal.

The USEPA surveys identified at least 14 pesticide plants using incineration for flows ranging up to 39,000 gal/day and heat capacities up to 77 million Btu/hour [7]. Many incinerators are devoted entirely for the destruction of pesticide wastes, but in some cases, only a small part of the capacity is devoted for this purpose.

As an example of incinerator use in the pesticide industry, one plant operates two incinerators to dispose of wastewater from six pesticide products [7]. They are rated at heat release capacities of 35 and 70 million Btu/hour and were designed to dispose of two different wastes. The first primary feed stream consists of approximately 95% organics and 5% water. The second stream consists of approximately 5% organics and 95% water. The energy generated in burning the primary stream is anticipated to vaporize all water in the secondary stream and to oxidize all the organics present. Wastes from two of the six pesticide processes use 0.55% and 4.68% of the incinerator capacity, respectively. The volume of the combined pesticide

Figure 14 Incineration system flow diagram. Waste is incinerated in the presence of air and supplemental fuel; the incinerator can be multiple hearth, fluidized bed, liquid injection, rotary kiln, or other types; caustic or lime scrubbers are used to remove gaseous

Was this article helpful?

0 0
Waste Management And Control

Waste Management And Control

Get All The Support And Guidance You Need To Be A Success At Understanding Waste Management. This Book Is One Of The Most Valuable Resources In The World When It Comes To The Truth about Environment, Waste and Landfills.

Get My Free Ebook


Post a comment