Water Freedom System

Survive Global Water Shortages

Get Instant Access

Akaike, H., Information theory and an extension of the maximum likelihood principle, in B.N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory, Supplement to Problems of Control and Information Theory, Akad. Kiado, Budapest, 1972, pp. 267-281. Anderson, M. P., and W. W. Woessner, Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic, San Diego, CA, 1992. Bard, Y., Nonlinear Parameter Estimation, Wiley, New York, 1974. Bear, J., Hydraulics of Groundwater, McGraw-Hill, New York, 1979. Bedient, P. B., H. S. Rifai, and C. J. Newell, Ground Water Contamination, Prentice-Hall,

Englewood Cliffs, NJ, 1994. Bellout, H., Stability result for the inverse transmissivity problem, J. Math. Anal. Applicat., 168, 13-27, 1992.

Bredehoeft, J. D., and G. F. Pinder, Digital analysis of areal flow in mutiaquifer groundwater systems: A quasi-three dimensional model, Water Resour. Res., 6(3), 885-888, 1980. Brutsaert, W., and H. A. Ibrahim, On the first and second linearization of the Boussinesq equation, J. Am. Soc. Geophys., 11, 549-554, 1966. Carrera, J., State of the art of the inverse problem applied to flow and solute transport equations, in E. Custodio, A. Gurgui, and J. P. Lobo Ferreira (Eds.), Groundwater Flow and Quality Modeling, D. Reidel, Hingham, MA, 1988, pp. 549-583. Carrera, J., and S. P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 3, Application to synthetic and field data, Water Resour. Res., 22(2), 228-242,


Chapman, M. J., and K. R. Godfrey, On structual equivalence and identifiability constraint ordering, in E. Walter (Ed.), Identifiability of Parametric Models, Pergamon, New York,

Chavent, G., M. Dupuy, and P. Lemonnier, History matching by use of optimal theory, Soc. Pet.

Eng. J., 15(1), 74-86, 1975. Coats, K. H., J. R. Dempsey, and J. H. Henderson, A new technique for determining reservoir description from filed performance data, Soc. Pet. Eng. J., 10( 1), 66-74, 1970. Coleman, T. F., A note on New Algorithms for constrained minmax optimization, Math.

Programming, 15, 239-242, 1978. Cooley, R. L., A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 1. Theory and numerical properties, Water Resour. Res., 13(2), 318324, 1977.

Cooley, R. L., A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 2. Application of statistical analysis, Water Resour. Res., 15(3), 603-617, 1979.

Cooley, R. L., Incorporation of prior information on parameters into nonlinear regression groundwater flow models, 1. Theory, Water Resour. Res., 18(A), 965-976, 1982. Dagan, G., Stochastic modeling of groundwater flow by unconditional and conditional probabilities: The inverse problem, Water Resour. Res., 21(1), 65-72, 1985. DeWiest, R. J. M., Geohydrology, Wiley, New York, 1965.

DiStefano, N., and A. Rath, An identification approach to subsurface hydrological systems, Water Resour. Res., 11(6), 1005-1012, 1975.

Eagleson, P. S, Dynamic Hydrology, McGraw-Hill, New York, 1970.

Emsellem, Y, and G. de Marsily, An automatic solution for the inverse problem, Water Resour. Res., 7(5), 1264-1283, 1971.

Eppstein, M. J, and D. E. Dougherty, Simultaneous estimation of transmissivity values and zonation, Water Resour. Res., 52(11), 3321-3336, 1996.

Ezzedine, S, and Y. Rubin, A geostatistical approach to conditional estimation of spatially distributed solute concentration and notes on the use of tracer data in the inverse problem, Water Resour. Res., 32(4), 853-862, 1987.

Freeze, R. A, A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media, Water Resour. Res., 11(5), 725-741, 1975.

Freeze, R. A, and J. A. Cherry, Groundwater, Prentice-Hall, Englewood Cliffs, NJ, 1979.

Haber, R, and H. Unbehauen, Structure identification of nonlinear dynamic system—A survey on Input/Output approaches, Automatica, 26(4), 651-677, 1990.

Hantush, M. S, Nonsteady flow to flowing wells in leaky aquifer, J. Geophys. Res., 64, 19431052, 1959.

Hill, M. C, A Computer Program (MODFLOWP) for Estimating Parameters of a Transient, Three-Dimensional, Ground-Water Flow Model Using Nonlinear Regression, Open-File Report 91-484, U.S. Geological Survey, Denver, CO, 1992.

Hoeksema, R. J, and P. K. Kitanidis, Analysis of the spatial structure of properties of selected aquifers, Water Resour. Res., 21(4), 563-572, 1985a.

Hoeksema, R. J, and P. K. Kitanidis, Comparison of Gaussian conditional mean and Kriging estimation in the geostatistical solution of inverse problem, Water Resour. Res., 21(6), 825836, 1985b.

Hyndman, D. W, and S. M. Gorelick, Estimating lithologic and transport properties in three dimensions using seismic and tracer data: The Kesterson aquifer, Water Resour. Res., 32(9), 2659-2670, 1996.

Kitanidis, P, Quasi-linear geostatistical theory forinversing, Water Resour. Res., 57(10), 24112420, 1995.

Kitanidis, P. K, and E. G. Vomvoris, A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations, Water Resour. Res., 19(3), 677-690, 1983.

Koltermann, C. E, and S. M. Gorelick, Heterogeneity in sedimentary: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resour. Res., 32(9), 2617— 2658, 1996.

Loaiciga, H. A., and M. A. Marino, The inverse problem for confined flow: Identification and estimation with extension, Water Resour. Res., 25(1), 92-104, 1987.

Loaiciga, H. A, R. B. Laipnik, P. K. Herdak, and M. A. Marino, Effective hydraulic conductivity of nonstationary aquifers, Stochast. Hydrol. Hydraul., 5(1), 1-17, 1994.

McDonald, M. G, and A. W. Harbaugh, A Modular Three-Dimensional Finite Difference Ground-Water Flow Model, Open-File Report 83-875, U.S. Geological Survey, Denver, CO, 1988.

McLaughlin, D, and L. R. Townley, A reassessment of the groundwater inverse problem, Water Resour. Res., 32(5), 1131-1162, 1996.

Neuman, S. P., Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty, Water Resour. Res., 9(4), 10061021, 1973.

Prickett, T. A., and C. O. Lonnquist, Selected Digital Computer Techniques for Groundwater Resource Evaluation, Bulletin No. 55, Illinois State Water Survey, Urbana, IL, 1971.

Poeter, E. P., and M. C. Hill, Inverse models: a necessary next step in ground-water modeling, Ground Water, 35(2), 250-260, 1997.

RamaRoa, B. S., M. A. La Venue, G. de Marsily, and M. G. Marietta, Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 1, Theory and computational experiments, Water Resour. Res., 31(3), 475-493, 1995.

Rubin, Y., and G. Dagan, Stochastic identification of transmissivity and effective recharge in steady groundwater flow, I, Theory, Water Resour. Res., 23(1), 1809-1916, 1992.

Rubin, Y., G. Mavko, and J. Harris, Mapping permeability in heterogeneous aquifers using hydrological and seismic data, Water Resour. Res., 28(1), 1809-1816, 1992.

Rustem, B., A constrained min-max algorithm for rival models of the same economic system, Math. Programming, 53, 279-295, 1992.

Shah, P. C., G. R. Gavalas, and J. H. Seinfeld, Error analysis in history matching: The optimum level of parameterization, Soc. Pet. Eng. J., 18(3), 219-228, 1978.

Sun, N-Z., Inverse Problems in Groundwater Modeling, Kluwer Academic, Norwell, Mass., 1994a.

Sun, N-Z., Mathematical Modeling of Groundwater Pollution, Springer-Verlag, New York, 1994b.

Sun, N-Z., Identification and reduction of model structure for modeling distributed parameter systems, in J. Gottlieb and P. DuChateau (Eds.), Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, Kluwer Academic, Norwell, Mass., 1996.

Sun, N-Z., and W. W-G. Yeh, Identification of parameter structure in groundwater inverse problem, Water Resour. Res., 21(6), 869-883, 1985.

Sun, N-Z., and W. W-G. Yeh, Coupled inverse problem in groundwater modeling, 1, Sensitivity analysis and parameter identification, Water Resour. Res., 26(10), 2507-2525, 1990.

Sun, N-Z., and W. W-G. Yeh, A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis, Water Resour. Res., 25(12), 3269-3280, 1992.

Sun, N-Z., M-C. Jeng, and W. W-G. Yeh, A proposed geological parameterization method for parameter identification in three-dimensional groundwater modeling, Water Resour. Res., 5/(1), 89-102, 1995.

Sun, N-Z., M-C. Jeng, and W. W-G. Yeh, Model structure identification: The generalized inverse problem, in K. W. Watson and Z. Zaporozec (Eds.), Advances in Ground-Water Hydrology, American Institute of Hydrology, Tampa, FL, 1997, pp. 130-134).

Sun, N-Z., S. Yang, and W. W-G. Yeh, A proposed stepwise regression method for model structure identification, Water Resour. Res., 54(10), 2561-2572, 1998.

Todd, D. K., Groundwater Hydrology, Wiley, New York, 1980.

Wagner, B. J., and S. M. Gerelick, Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: From data to design, Water Resour. Res., 25(10), 22112225, 1989.

Willis, R., and W. W-G. Yeh, Groundwater Systems Planning and Management, Prentice-Hall, Englewood Cliffs, NJ, 1987.

Xiang, Y., J. F. Sykes, and N. R. Thomson, A composite L, parameter estimator for model fitting in groundwater flow and solute transport simulation, Water Resour. Res., 29(6), 1661-1674, 1993.

Yakowitz, S., and L. Duckstein, Instability in aquifer identification: Theory and case studies, Water Resour. Res., 16(6), 1045-1064, 1980.

Yeh, W. W-G., Review of parameter identification procedure in groundwater hydrology: The inverse problem, Water Resour. Res., 22(2), 9-108, 1986.

Yeh, W. W-G., Systems analysis in ground-water planning and management, J. Water Resour. Planning and Mgmt., 118(3), 224-237, 1992.

Yeh, W. W-G., and N-Z. Sun, An extended identifiability in aquifer parameter identification and optimal pumping test design, Water Resour. Res., 20(12), 1837-1847, 1984.

Yeh, W. W-G., and N-Z. Sun, Variational sensibility analysis, data requirements, and parameter identification in a leaky aquifer system, Water Resour. Res., 26(9), 1827-1938, 1990.

Yeh, W. W-G., and Y. S. Yoon, A systematic optimization procedure for the identification of inhomogeneous aquifer parameters, in Z. A. Saleen (Ed.), Advances in Groundwater Hydrology, American Water Resources Association, Minneapolis, Minnesota, 1976, pp. 72-82.

Yeh, W. W-G., and Y. S. Yoon, Aquifer parameter identification with optimum dimension in parameterization, Water Resour. Res., 17(3), 664-672, 1981.

Yeh, J. T-C., and J. Zhang, A geostatistical inverse method for variably saturated flow in the vadose zone, Water Resour. Res., 32(9), 2757-2766, 1996.

Yeh, W. W-G., Y. S. Yoon, and K. S. Lee, Aquifer parameter identification with Kriging and optimum parameterization, Water Resour. Res., 19(1), 225-233, 1983.

Yoon, Y. S., Yeh, W. W-G. Parameter identification in an inhomogeneous medium with the finite-element method, Soc. Petrol. Eng. J., 16(4), 217-226, 1976.

Zheng, C., and P. Wang, Parameter structure identification using tabu search and simulated annealing, Adv. Water Resour., 19(4), 215-224, 1996.

Was this article helpful?

0 0

Post a comment