References

Ahsan, M., and K. M. O'Connor, A simple non-linear rainfall -runoff model with a variable gain factor, J. Hydrol., 155, 151-183, 1994.

Antolik, M. S., An overview of the National Weather Service's Centralized Statistical Quantitative Precipitation Forecasts, J. Hydrol., 239, 306-337, 2000.

Awwad, H. M., and J. B. Valdes, Adaptive parameter-estimation for multisite hydrologic forecasting, J. Hydraul. Eng. ASCE, 118(9), 1201-1221, 1992.

Awwad, H. M., J. B. Valdes, and P. J. Restrepo, Streamflow forecasting for Han River Basin, Korea, ASCE J. Water Resour. PI., 120(5), 651-673, 1994.

Bern, G. J., and E. Flamenco, Seasonal volume forecast in the Diamante River, Argentina based on El Niño observations and predictions, Water Resour. Res., 35(12), 3803-3810,

1999.

Bertoni, J. C., C. E. Tucci, and R. T. Clarke, Rainfall-based real-time flood forecasting, J. Hydrol., 131, 313-339, 1992.

Bougeault, P., P. Binder, A. Buzzi, R. Dirks, R. Houze, J. Kuettner, R. B. Smith, R. Steinacker, and H. Volkert, The MAP special observing period, Bull. Am. Met. Soc., 82(3), 433^62,

2000.

Box, G. E. P., and D. R. Cox, An analysis of transformations, J. R. Statist. Soc. B, 26, 211-252, 1964.

Box, G. E. P., and G. M. Jenkins, Time Series Analysis Forecasting and Control, Holden-Day Press, San Francisco, 1976.

Brath, A., P Burlando, and R. Rosso, Sensitivity analysis of real-time flood forecasting to on-line rainfall predictions, in F. Siccadi and R. L. Bras (Eds.), Selected Papers of the Workshop on Natural Disasters in European Mediterranean Countries, Colombella, Perugia, Italy, 1988, pp. 469^88.

Brockwell, P. J., and R. A. Davis, Time Series: Theory and Methods, 2nd ed., Springer-Verlag, New York, 1991.

Brown, G. R., and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 3rd ed., Wiley, New York, 1996.

Burlando, P., and R. Rosso, Stochastic models of temporal rainfall: Reproducibility, estimation and prediction of extreme events, in J. Marco-Segura, R. Harboe, and J. D. Salas (Eds.), Stochastic Hydrology and Its Use in Water Resources Systems Simulation and Optimization, Kluwer, Dordrecht, 1993, pp. 137-173.

Burlando, P., R. Rosso, L. Cadavid, and J. D. Salas, Forecasting of short-term rainfall using ARMA models, J. Hydrol., 144, 193-211, 1993.

Burlando, P., A. Montanari, and R. Ranzi, Forecasting of storm rainfall by combined use of radar, rain gages and linear models, Atmos. Res., 42, 199-216, 1996.

Burn, D. H., and E. A. McBean, River flow forecasting model for Sturgeon river, J. Hydraul. Eng. ASCE, 111(2), 316-333, 1985.

Carter, M. M., and J. B. Eisner, A statistical method for forecasting rainfall over Puerto Rico, weather and forecasting, 12(3), 515-525, 1997.

Carter, M. M., J. B. Eisner, and S. P. Bennett, A quantitative precipitation forecast experiment for Puerto Rico, J. Hydrol., 239, 162-178, 2000.

Chiew, F. H. S., T. C. Piechota, J. A. Dracup, and T. A. McMahon, El Niño/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting, J. Hydro!., 204, 138-149, 1998.

Chiu, C. L. (Ed.), Applications of Kalman Filter to Hydrology, Hydraulics and Water Resources, University of Pittsburgh Press, Pittsburgh, PA, 1978.

Croley II, T. E., Using Meteorology Probability Forecasts in Operational Hydrology, American Society of Civil Engineer (ASCE) Press, 2000.

Croley II, T. E., Using NOAA's new climate outlooks in operational hydrology, ASCE J. Hydrol. Eng., 1(3), 93-102, 1996.

Croley II, T. E., Water resource predictions from meteorological probability forecasts, in D. Rosbjerg et al., Proceedings of the Sustainability of Water Resources Under Increasing Uncertainty, IAHS Publication 240, IAHS Press, Institute of Hydrology, Wallingford, Oxfordshire, 1997, pp. 301-309.

Croley II, T. E., and K. Kunkel, Application of the new NWS climate outlook in operational hydrology, in Proceedings of the Thirteenth Conference on Probability and Statistics in Atmospheric Sciences, American Meteorological Society, San Francisco, CA, 1996, pp. 231-238.

Dahale, S. D., and P. V Puranik, Climatology and predictability of the spatial coverage of 5-day rainfall over Indian subdivisions, Int. J. Climatol., 20(4), 443-453, 2000.

Day, G., Extended streamflow forecasting using NWSRFS, ASCE J. Water Res. Planning Mgmt., 111(2), 157-170, 1985.

de Jager, J. M., A. B. Potgieter, and W. J. van den Berg, Framework for forecasting the extent and severity of drought in maize in the Free State Province of South Africa, Agrie. Syst., 57(3), 351-365, 1998.

Delleur, J. W., and M. L. Kavvas, Stochastic models for monthly rainfall forecasting and synthetic generation, J. Appl. Meteoro!, 17, 1528-1536, 1978.

Deo, M. C., and K. Thirumalaiah, Real time forecasting using neural networks, in R. S. Govindaraju and A. R. Rao (Eds.), Artificial Neural Networks in Hydrology, Kluwer Academic, Dordrecht, 2000, pp. 53-72.

Entekhabi, D., I. Rodriguez-Iturbe, and P. S. Eagleson, Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott rectangular pulse model: Parameter estimation validation, Water Resour. Res., 25(2), 295-302, 1989.

Fraedrich, K., and K. Müller, On single station forecasting: Sunshine and rainfall Markov chains, Beitr. Phys. Atmos., 56, 108-134, 1983.

Francis, R. I. C. C., and J. A. Renwick, A regression-based assessment of the predictability of New Zealand climate anomalies, Theor. Appl. Climatol., 60, 21-36, 1998.

French, M. N., R. L. Bras, and W. F. Krajewski, A Monte-Carlo study of rainfall forecasting with a stochastic model, Stochast. Hydrol. Hydraul., 6(1), 27-^5, 1992a.

French, M. N., W. F. Krajewski, and R. R. Cuykendall, Rainfall forecasting in space and time using a neural network, J. Hydrol., 137, 1-31, 1992b.

French, M. N., and W. F. Krajewski, A model for real-time quantitative rainfall forecasting using remote sensing. 1. Formulation, Water Resour. Res., 30(4), 1075-1083, 1994.

French, M. N., H. Andrieu, and W. F. Krajewski, A model for real-time quantitative rainfall forecasting using remote sensing. 1. Formulation, Water Resour. Res., 30(4), 1085-1097, 1994.

Georgakakos, K. P., A generalized stochastic hydrometeorological model for flood and flash-flood forecasting: 2. Case studies, Water Resour. Res., 22(13), 2096-2106, 1986.

Glahn, H. R., and D. A. Lowry, The use of model output statistics (MOS) in objective weather forecasting, J. Appl. Meteorol, 11, 1203-1211, 1972.

Govindaraju, R. S., and A. R. Rao, Artificial Neural Networks in Hydrology, Kluwer Academic, Dordrecht, 2000.

Gray, W. M., W. L. Christofer, P. W. Mielke, and K. R. J. Berry, Predicting Atlantic Basin seasonal tropical cyclone activity by 1 June, Weather Forecast., 9, 103-115, 1994.

Grecu, M., and W. Krajewski, Simulation study of the effects of model uncertainty in variational assimilation of radar data on rainfall forecasting, J. Hydrol, 239(1—4), 85-96, 2000.

Gregory, J. M., T. M. Wigley, and P. D. Jones, Determining and interpreting the order of a two-state Markov chain: Application to models of daily precipitation, Water Resour. Res., 28(5), 1443-1446, 1992.

Gupta, H. V, K. Hsu, and S. Sorooshian, Effective and efficient modeling for streamflow forecasting, in R. S. Govindaraju, and A. R. Rao (Eds.), Artificial Neural Networks in Hydrology, Kluwer Academic, Dordrecht, 2000, pp. 7-22.

Guetter, A. K., and K. P. Georgakakos, Are the El Niño and La Niña predictors of the Iowa River seasonal flow, J. Appl. Meteorol., 35, 690-705, 1996.

Guhathakurta, P., M. Rajeevan, and V Thapliyal, Long range forecasting Indian summer monsoon rainfall by a hybrid principal component neural network model, Meteorol. Atmos. Phys., 7/(3-4), 255-266, 1999.

Halinter, J. P., and J. D. Salas, Short-term forecasting of snowmelt runoff using ARMAX models, Water Resour. Bull, 24(5), 1083-1089, 1988.

Hamlet, A. E, and D. P. Lettenmaier, Columbia River streamflow forecasting based on ENSO and PDO climate signals, ASCE J. Water Resour. Planning Mgmt., 125(6), 333341, 1999.

Hsieh, W. W., and B. Tang, Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Am. Meteorol. Soc., 79, 1855-1870, 1998.

Jimenez, C., A. I. McLeod, and K. W. Hipel, Kalman filter estimation for periodic auto-regressive-moving average models, Stochastic Hydrol. Hydraul., 227-240, 1989.

Jinno, K., A. Kawamura, R. Berndtsson, M. Larson, and J. Niemczynowicz, Real-time rainfall prediction at small space-time scales using a 2-dimensional stochastic advection-diifusion model, Water Resour. Res., 29(5), 1489-1504, 1993.

Johnson, E. R., and R. L. Bras, Multivariate short-term rainfall prediction, Water Resour. Res., 16(1), 173-185, 1980.

Jury, M. R., Statistical analysis and prediction of KwaZulu-Natal climate, Theor. Appl. Climatol., 60( I —4), 1-10, 1998.

Kalman, R. E., A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng. Ser. D, 82, 35^15, 1960.

Kalman, R. E., and R. S. Buey, New results in linear filtering and prediction theory, Trans. ASME J. Basic Eng. Ser. D, 83, 95-107, 1961.

Kayha, E., and J. A. Dracup, US streamflow patterns in relation to the El Niño Southern Oscillation, Water Resour. Res., 29, 2491-2503, 1993.

Kayha, E., and J. A. Dracup, The influences of type 1 El Niño and La Niña events on streamflows in the Pacific Southwest of the United States, J. Climatol., 7, 965-976, 1994.

Katz, R. W., On some criteria for estimating the order of a Markov chain, Technometrics, 23(3), 243-249, 1981.

Kawamura, A., K. Jinno, R. Berndtsson, and T. Furukawa, Parameterization of rain cell properties using an advection-diffusion model and rain gage data, Atmos. Res., 42, 67-73, 1996.

Kawamura, A., K. Jinno, R. Berndtsson, and T. Furukawa, Real-time tracking of convective rainfall properties using a two-dimensional advection-diffusion model, J. Hydrol., 203(1-4), 109-118, 1997.

Kuligowski, R. J., and A. P. Barros, Experiments in short-term precipitation forecasting using artificial neural networks, Monthly Weather Rev., 126, 470-482, 1998.

Labadie, J. W., R. C. Lazaro, and D. M. Morrow, Worth of short-term rainfall forecasting for combined sewer overflow control, Water Resour. Res., 17(5), 1489-1497, 1981.

Lardet, P., and C. Obled, Real-time flood forecasting using a stochastic rainfall generator, J. Hydrol, 162(3-A), 391^108, 1994.

Lettenmaier, D. P., and E. F. Wood, Hydrologic forecasting, in D. R. Maidment (Ed.), Handbook of Hydrology, McGraw-Hill, New York, 1993.

Liu, Z., J. B. Valdés, and D. Entekhabi, Merged forecasts of drought index anomalies along the Gulf Coast in the US using multiple precursors, Exper. Long-Lead Forecast Bull., 6(2), 9— 11, 1997.

Liu, Z., J. B. Valdés, and D. Entekhabi, Merging and error analysis of regional hydrometeor-ologic anomaly forecasts conditioned on climate precursors, Water Resour. Res., 34(8), 1959-1969, 1998.

Lowry, D. A., and H. R. Glahn, An operational model for forecasting probability of precipitation—PEATMOS PoP, Monthly Weather Rev., 104, 221-232, 1976.

Luk, K. C., J. E. Ball, and A. Sharma, A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting, J. Hydrol., 227(1-4), 56-65, 2000.

Makarau, A., and M. R. Jury, Predictability of Zimbabwe summer rainfall, Int. J. Climatol., 77(13), 1421-1432, 1997.

Miller, A. J., and L. M. Leslie, Short-term single station forecasting of precipitation, Monthly Weather Rev., 112, 1198-1205, 1984.

Montanari, A., P. Burlando, and R. Rosso, Forecasting of short-term rainfall using multivariate ARMA models. Annal. Geophys., 12(sp. issue), C325 C409. 1994 (abstract).

Navone, H. D., and H. A. Ceccatto, Predicting Indian monsoon rainfall—a neural network approach, Climate Dynam., 70(6-7), 305-312, 1994.

Ngan, P., and S. O. Russell, Example of flow forecasting with Kalman filter, ASCEJ. Hydraul. Eng., 112(9), 818-832, 1986.

Nguyen, V T. V., M. B. McPherson, and J. Rousselle, Urban Water Resource Research Program, Technical Memo 35, American Society of Chemical Engineers, New York, 1978.

Obeysekera, J. T. B., G. Q. Tabios III, and J. D. Salas, On parameter estimation of temporal rainfall models, Water Resour. Res., 23(10), 1837-1850, 1987.

O'Connell, P. E. (Ed.), Real Time Hydrological Forecasting and Control, Institute of Hydrology, Wallingford, England, 1980.

Phanartzis, C. A., Rainfall prediction, Progress Report Wastewater Program, City and County of San Francisco, CA, 1979.

Ramirez, J. A., and R. L. Bras, Conditional distributions of Neyman-Scott models for storm arrivals and their use in irrigation control, Water Resour. Res., 21, 317-330, 1985.

Refsgaard, J. C., Validation and intercomparison of different updating procedures for real-time forecasting, Nordic Hydrol., 28, 65-84, 1997.

Rodriguez-Iturbe, I., and P. S. Eagleson, Mathematical models of rainstorm events in space and time, Water Resour. Res., 23(1), 181-190, 1987.

Sahai, A. K., M. K. Soman, and V Satyan, All India summer monsoon rainfall prediction using an artificial neural network, Climate Dynam., 76(4), 291-302, 2000.

Salas, J. D., M. Markus, and A. S. Tokar, Streamflow forecasting based on artificial neural networks, in R. S. Govindaraju, and A. R. Rao (Eds.), Artificial Neural Networks in Hydrology, Kluwer Academic, Dordrecht, 2000, pp. 23-52.

Sansó, B., and L. Guenni, A nonstationary multisite model for rainfall, J. Am. Statist. Assoc., 95(452), 1089-1100, 2000.

Schaake, J. C., and L. Larson, A strategy for ensemble streamflow prediction (ESP), Proceedings of the American Meteorological Society Annual Meeting, Phoenix, AZ, Vol. J104-J105, 1997.

Scott, D. W., Multivariate density estimation: Theory, practice and visualisation. Probability and Mathematical Statistics Series, Wiley, New York, 1992.

Sharma, A., Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3—a non parametric probabilistic forecast model, J. Hydrol., 239(1-4), 249-258, 2000.

Stengel, R. F., Stochastic Optimal Control Theory and Application, Wiley, New York, 1986.

Stone, R. C., G. L. Hammer, and T. Marcussen, Prediction of global rainfall using phases of the Southern Oscillation index, Nature, 384, 252-255, 1996.

Sugimoto, S., E. Nakakita, and S. Ikebuchi, A stochastic approach to short-term rainfall prediction using a physically based conceptual rainfall model, J. Hydrol., 242(1-2), 137155, 2001.

Takasao, T., and M. Shiiba, Development of techniques for on-line forecasting of rainfall and flood runoff, Natural Disaster ScL, 6(2), 83-112, 1984.

Takasao, T., M. Shiiba, and K. Takara, Stochastic state-space techniques for flood runoff forecasting, in Proc. Pacific Int. Seminaron Water Resour. Systems, Tomanu, Japan, 1989, 117-132.

Thapliyal, V, Preliminary and final long range forecast for seasonal monsoon rainfall over India, J. Arid Environ., 56(3), 385 403, 1997.

Tong, H., Determination of the order of a Markov chain by Akaike's information criterion, J. Appl. Prob., 12, 488-497, 1975.

Toth, E., A. Brath, and A. Montanari, Comparison of short-term rainfall prediction models for real-time flood forecasting, ASCE J. Hydrol., 239( 1-4), 132-147, 2000.

Trotta, P. D., J. W. Labadie, and N. S. Grigg, Automatic control strategies for urban stormwater, ASCE J. Hydraul. Div., 705(HY12), 1977.

Twedt, T. M., J. C. Schaake, Jr., and E. L. Peck, National Weather Service extended streamflow prediction, Proc. 45th Western Snow Conference, Albuquerque, NM, April 1977, pp. 52-57.

von der Heydt, L., L. E. Brazil, and K. Jawed, ABPA realtime hydrologic forecasting for the Columbia River Basin, in Proceedings of the 21st Annual Conference of the ASCE Water Resources Planning and Management Division, Denver, CO, 1994. Wood, E.E and P.E. O'Connell, "Real Time Forecasting" in Hydrological Forecasting, M. G.

Anderson and T. P. Burt (Eds), John Wiley & Sons Inc., 1985, 505-558. Yu, P. S., and T. C. Yang, A probability-based renewal rainfall model for flow forecasting, Nat.

Hazards, 75(1), 51-70, 1997. Zawadzki, I., Fractal structure and exponential decorrelation in rain, J. Geophys. Res., 92(D8), 9586-9590, 1987.

Was this article helpful?

0 0

Post a comment