Free Power Secrets

Making Your Own Fuel

Get Instant Access

1. Introduction and framework of this report 19

2. Sources of CO2 22

3. Capture of CO2 24

4. Transport of CO2 29

5. Geological storage 31

6. Ocean storage 37

7. Mineral carbonation and industrial uses 39

8. Costs and economic potential 41

9. Emission inventories and accounting 46

10. Gaps in knowledge 48

1. Introduction and framework of this report

Carbon dioxide capture and storage (CCS), the subject of this Special Report, is considered as one of the options for reducing atmospheric emissions of CO2 from human activities. The purpose of this Special Report is to assess the current state of knowledge regarding the technical, scientific, environmental, economic and societal dimensions of CCS and to place CCS in the context of other options in the portfolio of potential climate change mitigation measures.

The structure of this Technical Summary follows that of the Special Report. This introductory section presents the general framework for the assessment together with a brief overview of CCS systems. Section 2 then describes the major sources of CO2, a step needed to assess the feasibility of CCS on a global scale. Technological options for CO2 capture are then discussed in Section 3, while Section 4 focuses on methods of CO2 transport. Following this, each of the storage options is addressed. Section 5 focuses on geological storage, Section 6 on ocean storage, and Section 7 on mineral carbonation and industrial uses of CO2. The overall costs and economic potential of CCS are then discussed in Section 8, followed by an examination in Section 9 of the implications of CCS for greenhouse gas emissions inventories and accounting. The Technical Summary concludes with a discussion of gaps in knowledge, especially those critical for policy considerations.

Overview of CO2 capture and storage

CO2 is emitted principally from the burning of fossil fuels, both in large combustion units such as those used for electric power generation and in smaller, distributed sources such as automobile engines and furnaces used in residential and commercial buildings. CO2 emissions also result from some industrial and resource extraction processes, as well as from the burning of forests during land clearance. CCS would most likely be applied to large point sources of CO2, such as power plants or large industrial processes. Some of these sources could supply decarbonized fuel such as hydrogen to the transportation, industrial and building sectors, and thus reduce emissions from those distributed sources.

CCS involves the use of technology, first to collect and concentrate the CO2 produced in industrial and energy-related sources, transport it to a suitable storage location, and then store it away from the atmosphere for a long period of time. CCS would thus allow fossil fuels to be used with low emissions of greenhouse gases. Application of CCS to biomass energy sources could result in the net removal of CO2 from the atmosphere (often referred to as 'negative emissions') by capturing and storing the atmospheric CO2 taken up by the biomass, provided the biomass is not harvested at an unsustainable rate.

Figure TS.1 illustrates the three main components of the CCS process: capture, transport and storage. All three components are found in industrial operations today, although mostly not for the purpose of CO2 storage. The capture step involves separating CO2 from other gaseous products. For fuel-burning processes such as those in power plants, separation technologies can be used to capture CO2 after combustion or to decarbonize the fuel before combustion. The transport step may be required to carry captured CO2 to a suitable storage site located at a distance from the CO2 source. To facilitate both transport and storage, the captured CO2 gas is typically compressed to a high density at the capture facility. Potential storage methods include injection into underground geological formations, injection into the deep ocean, or industrial fixation in inorganic carbonates. Some industrial processes also might utilize and store small amounts of captured CO2 in manufactured products.

The technical maturity of specific CCS system components varies greatly. Some technologies are extensively deployed in mature markets, primarily in the oil and gas industry, while others are still in the research, development or demonstration phase. Table TS.1 provides an overview of the current status of all CCS components. As of mid-2005, there have been three commercial projects linking CO2 capture and geological storage: the offshore Sleipner natural gas processing project in Norway, the Weyburn Enhanced Oil Recovery (EOR)1 project in Canada (which stores CO2 captured in the United States) and the In Salah natural gas project in Algeria. Each captures and stores 1-2 MtCO2 per year. It should be noted, however, that CCS has not yet been applied at a large (e.g., 500 MW) fossil-fuel power plant, and that the overall system may not be as mature as some of its components.

1 In this report, EOR means enhanced oil recovery using CO2

Figure TS.1. Schematic diagram of possible CCS systems. It shows the sources for which CCS might be relevant, as well as CO2 transport and storage options (Courtesy CO2CRC).

Why the interest in CO2 capture and storage?

In 1992, international concern about climate change led to the United Nations Framework Convention on Climate Change (UNFCCC). The ultimate objective of that Convention is the "stabilization of greenhouse gas concentrations in the atmosphere at a level that prevents dangerous anthropogenic interference with the climate system". From this perspective, the context for considering CCS (and other mitigation options) is that of a world constrained in CO2 emissions, consistent with the international goal of stabilizing atmospheric greenhouse gas concentrations. Most scenarios for global energy use project a substantial increase of CO2 emissions throughout this century in the absence of specific actions to mitigate climate change. They also suggest that the supply of primary energy will continue to be dominated by fossil fuels until at least the middle of the century (see Section 8). The magnitude of the emissions reduction needed to stabilize the atmospheric concentration of CO2 will depend on both the level of future emissions (the baseline) and the desired target for long-term CO2 concentration: the lower the stabilization target and the higher the baseline emissions, the larger the required reduction in CO2 emissions. IPCC's Third Assessment Report (TAR) states that, depending on the scenario considered, cumulative emissions of hundreds or even thousands of gigatonnes of CO2 would need to be prevented during this century to stabilize the CO2 concentration at 450 to 750 ppmv2. The TAR also finds that, "most model results indicate that known technological options3 could achieve a broad range of atmospheric CO2 stabilization levels", but that "no single technology option will provide all of the emissions reductions needed". Rather, a combination of mitigation measures will be needed to achieve stabilization. These known technological options are available for stabilization, although the TAR cautions that, "implementation would require associated socio-economic and institutional changes".

2 ppmv is parts per million by volume.

3 "Known technological options" refer to technologies that are currently at the operation or pilot-plant stages, as referred to in the mitigation scenarios discussed in IPCC's Third Assessment Report. The term does not include any new technologies that will require drastic technological breakthroughs. It can be considered to represent a conservative estimate given the length of the scenario period.

Table TS.1. Current maturity of CCS system components. An X indicates the highest level of maturity for each component. There are also less mature technologies for most components.

CCS component

CCS technology

Research phase a

Demonstration phase b

Economically feasible under specific conditions c

Mature market d



Was this article helpful?

0 0
Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook

Post a comment