GHG Emissions and Concentrations Are Increasing

Human activities have increased the concentration of CO2 and certain other GHGs in the atmosphere. Detailed worldwide records of fossil fuel consumption indicate that fossil fuel burning currently releases over 30 billion tons of CO2 into the atmosphere every year (Figure 2.3, blue curve). Tropical deforestation and other land use changes release an additional 3 to 5 billion tons every year.

Precise measurements of atmospheric composition at many sites around the world indicate that CO2 levels are increasing, currently at a pace of almost 2 parts per million (ppm) per year. We know that this increase is largely the result of human activities because the chemical signature of the excess CO2 in the atmosphere can be linked to the composition of the CO2 in emissions from fossil fuel burning. Moreover, analyses of bubbles trapped in ice cores from Greenland and Antarctica reveal that atmospheric CO2 levels have been rising steadily since the start of the Industrial Revolution (usually taken as 1750; see Figure 2.3, red curve). The current CO2 level (388 ppm as of the end of 2009) is higher than it has been in at least 800,000 years.

2000

FIGURE 2.3 CO2 emissions due to fossil fuel burning (blue line and right axis) from 1800 to 2006 and atmospheric CO2 concentrations (red line and left axis) from 1847 to 2008. For further details see Figures 6.2, 6.3, and 6.4. Based on data from Boden et al. (2009), Keeling et al. (2009), and Neftel et al. (1994).

2000

FIGURE 2.3 CO2 emissions due to fossil fuel burning (blue line and right axis) from 1800 to 2006 and atmospheric CO2 concentrations (red line and left axis) from 1847 to 2008. For further details see Figures 6.2, 6.3, and 6.4. Based on data from Boden et al. (2009), Keeling et al. (2009), and Neftel et al. (1994).

Only 45 percent of the CO2 emitted by human activities remains in the atmosphere; the remainder is absorbed by the oceans and land surface. Current estimates, which are based on a combination of direct measurements and models that simulate ecosystem processes and biogeochemical cycles, indicate that roughly twice as much CO2 is taken up annually by ecosystems on the land surface as is released by deforestation; thus, the land surface is a net "carbon sink." The oceans are also a net carbon sink, but only some of the CO2 absorbed by the oceans is taken up and used by marine plants; most of it combines with water to form carbonic acid, which (as described below) is harmful to many kinds of ocean life. The combined impacts of rising CO2 levels, temperature change, and other climate changes on natural ecosystems and on agriculture are described later in this chapter and in further detail in Part II of the report.

Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment