Energy Carriers Transmission And Storage

Fossil fuels have come to dominate our energy system because they are dense energy sources that can be transformed into easily transportable and storable fuels and have historically been readily available at relatively low market prices. Moving to an energy system that produces fewer GHG emissions will require examination of issues involving integrating intermittent renewable energy sources from remote sites, smarter transmission and distribution grids, storage, and flexible/manageable loads, among others. As the America's Energy Future committee noted, the U.S. electricity transmission and distribution system is in urgent need of modernization to meet growing demand and to accommodate ever-larger amounts of intermittent sources of energy, especially wind and solar power. Moreover, many of the best areas for wind and solar generation are far from centers of energy demand and, on the other end, there is likely to be an increased need for accommodating distributed generation and two-way metering (e.g., for homes with PV panels). Finally, many of the renewable technologies discussed above have higher direct land use requirements than fossil fuels. These land use impacts have led to (and will presumably continue to generate) instances of local opposition to the siting of renewable electricity-generating facilities and associated transmissions lines.

Improvements in energy transmission efficiency and "intelligence" are needed for these resources to most effectively meet energy needs. Linking together many stable, intermittent, and distributed resources as well as grid-based storage in an extensive "smart" grid is needed to smooth out the fluctuations experienced at individual installations and improve the overall efficiency of transmission (Arunachalam and Fleischer, 2008). Grid intelligence involves extensive use of advanced measurement, communications, and monitoring devices together with decision-support tools. Taken together, the elements of a smart grid would also increase grid resilience, reducing the risk of widespread collapse following a local disruption or damage from natural events (such as storms and flooding) as well as physical and cyber attacks. Improved two-way information flows form the foundation of new ways for consumers to understand and control their electricity consumption (Denholm et al., 2010).

Improving energy storage technology and finding new ways to store energy is critical for addressing the intermittency of many renewable energy sources. Storage in compressed air systems has been under development, as well as improved battery technologies, focusing on improvements in storage capacity, charge time, power output, and cost. For further discussion of the role of storage, see Denholm et al. (2010).

Solar Power

Solar Power

Start Saving On Your Electricity Bills Using The Power of the Sun And Other Natural Resources!

Get My Free Ebook


Post a comment