The environmental impacts of energy development and use have been the subject of multiple international environmental treaties and agreements. Although these international treaties tend not to address EE directly, they act as important drivers for their improvements. Environmental targets exist in international law for both the reduction of climate change gases, and for airborne pollutants. Most notably, targets for greenhouse gases (GHGs) are found in the 1992 United Nations Framework Convention on Climate Change (UNFCCC) and its associated 1997 Kyoto Protocol. The UNFCCC establishes a voluntary goal for signatory countries to stabilize GHG emissions at the 1990 levels by the year 2000, a goal that has largely not been met. Following up on the Convention, the Kyoto Protocol imposes a mandatory obligation on signatory countries that, if ratified, calls for an aggregate reduction in GHG emissions of 5 per cent during the 2008 to 2012 timeframe. Because reducing energy use has the effect of reducing fossil fuel combustion, these pollution reduction targets can create a legal and regulatory incentive for energy efficiency improvements as one mechanism for meeting the targets.

Similar targets exist for transboundary air pollutants. The 1979 Convention on Long Range Trans-boundary Air Pollution1 (LRTAP) and its associated protocols in 1985, 1988, 1991, 1994 and 1999, impose pollution reduction targets for conventional air pollutants. The 1985 Helsinki Protocol contains the basic provision for signatories to reduce their sulphur emissions '(...) by at least 30 per cent ... by 1993'.2 The 1988 Sophia Protocol obliges parties to '(...) control and/or reduce their national annual emissions of nitrogen oxides (.. .)'3 to 1987 levels. The 1991 Volatile Organic Compounds Protocol mandated a 30 per cent cut by 1999.4 The 1994 Oslo Protocol, built upon the reductions in sulphur in the Helsinki Protocol, but deepened them even further.5 Finally, the 1999 Gothenburg Protocol eclipsed the earlier Protocols and set stronger differentiated reduction limits for sulphur, nitrogen oxides, volatile organic compounds (VOCs), and ammonia.6 After having been ratified by 16 countries, the protocol entered into force on 17 May 2005.7

While international environmental law has established multiple air pollution reduction targets under various treaties, it has not established

1 Convention on Long Range Transboundary Air Pollution. BH764.txt. Available online at

2 UNECE-Helsinki Protocol. 1985. Article 2.

3 Ibid.

5 UNECE-Oslo Protocol. 1994. Protocol on Further Sulphur Reductions. Article 2.

6 UNECE-Gothenburg Protocol. 1999. Annex II. Emission Ceilings.

7 Anon 2007.

similar targets or standards for EE. If international law does address efficiency directly, it usually comes in the form of broad policy statements encouraging domestic action on efficiency with no binding effect or enforceable obligations at the international level. This is because EE policy has traditionally been regarded principally as a matter of domestic law, notwithstanding its global implications. Rather than addressing EE policy directly, international law tends to address the issue indirectly. Generally, international environmental laws establish emissions reduction targets for certain countries to meet over a defined time period. It then leaves it up to the individual countries to specify which policies and measures will be adopted to reach those emissions targets in accordance with that country's own national strategy and priorities. Each individual country then decides whether and to what extent it will adopt policies and measures to promote energy efficiency in furtherance of that country's commitments under the treaty.

Recent international efforts on climate change, however, may signal an increasing willingness of the international community to delve into energy efficiency matters directly, at least under certain circumstances. The Kyoto Protocol, as implemented by the 2001 Marrakech Accords, sets forth three flexibility mechanisms—emissions trading, JI and CDM—that enable one country to meet part of its emissions reduction obligations through activities undertaken in other countries. These flexibility mechanisms represent special circumstances in which EE activities are taking place across borders with actors from more than one country in furtherance of international treaty obligations. Because activities by parties in one country help determine compliance with treaty obligations in another country, the international community has shown a greater willingness, at least in the case of CDM and JI, to depart from the general rule of leaving energy efficiency matters to the realm of domestic law and policy. The Kyoto Protocol also contains a rarely discussed and often overlooked provision for the coordination of policies and measures (PAMs) to achieve emissions reductions among signatory countries. Recent efforts to carry out the Kyoto directive concerning PAMs, as elaborated in the Marrakech Accords, could signal increased international involvement in the traditionally domestic sphere of energy efficiency policy.

This chapter provides a chronology of international environmental law's treatment of EE, including discussions of the various treaties addressing transboundary air pollution and climate change, and the Energy Charter Treaty (ECT). The chronology is followed by a more detailed discussion of the UNFCCC, Kyoto Protocol and Marrakech Accords. The overarching framework, guiding principles and organizational structure ofthe UNFCCC, which laid the foundation for the Kyoto Protocol, are first discussed. The Kyoto Protocol and Marrakech Accords are then addressed, including an assessment of the potential drivers and barriers they may create to increased energy efficiency investment.

Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook

Post a comment