How This Book Is Organized

Part I of this book outlines the critical soil and sediment ecosystem services (e.g., carbon sequestration, oxygen production, renewal of fertility, cleansing of water, provision of food; see Table 1.4) that sustain our natural and managed ecosystems. We also discuss, in Part I, the most essential below-surface habitats, ecological functions, and taxa for the provision of these services at different spatial and temporal scales. Table 1.4 provides a template of the types of ecosystem services that are expanded upon and discussed in each chapter. In Part II, ecologists provide a scientific appraisal of the vulnerability of the biota and functions in each domain and discuss how alterations resulting from global changes may affect the composition and operation of ecosystems and, in turn, the provision of ecosystem services. The integration of current knowledge revealed from the appraisal of each of the three domains—soils, freshwater sediments, and marine sediments—is then applied in Part III toward understanding the connectivity of the domains and the trade-offs that must be considered for managing and sustaining these systems.

This book provides an in-depth analysis of each domain and builds on previous reviews, examining ecosystem services (Daily et al. 2000; Dasgupta et al. 2000) and vulnerability of biodiversity to perform ecological functions in soils (Daily et al. 1997), and freshwater (Postel & Carpenter 1997) and marine ecosystems (Petersen & Lubchenco 1997). Wall et al. (2001b) considered soils and sediments as an ecological continuum and assessed the critical taxa and critical habitats for ecosystem services in terms of conserving these habitats. In this book we focus on the biodiversity within specific habitats

Table 1.4. Ecosystem services provided by soil and sediment biota.

Regulation of major biogeochemical cycles Retention and delivery of nutrients to plants and algae Generation and renewal of soil and sediment structure and soil fertility Bioremediation of wastes and pollutants Provision of clean drinking water Modification of the hydrological cycle Mitigation of floods and droughts Erosion control Translocation of nutrients, particles, and gases

Regulation of atmospheric trace gases (e.g., CO2, NOx)(production and consumption) Modification of anthropogenically driven global change (e.g., carbon sequestration, modifiers of plant and algae responses) Regulation of animal and plant (including algae, macrophytes) populations Control of potential pests and pathogens Contribution to plant production for food, fuel, and fiber Contribution to landscape heterogeneity and stability Vital component of habitats important for recreation and natural history

Modified from Daily et al. 1997; Wall and Virginia 2000; Wall et al. 2001a of each domain, their vulnerablity, and how the vulnerability differs within habitats of each domain. We present case studies and trade-offs throughout to illustrate that the biodiversity and ecosystem functions with this ecological continuum below-surface must be considered for management of the global ecosystem.

Because there are frequently varying definitions for terminology, in this book we have used the following definitions, modified from the Secretariat of the Convention on Biological Diversity (2001), Chapin et al. 2002, and Folke et al. 2002, throughout the text:

• Biodiversity: the variability among living organisms including genetic, species, functional group, and ecosystem diversity across all temporal and spatial scales.

• Ecosystem Functioning: the activity of an ecosystem process, as in nitrogen mineralization rates in a given location and time period.

• Ecosystem Good/Product: substance directly produced by an ecosystem and used by people.

• Ecosystem Processes: inputs or losses of materials and energy to and from the ecosystem and the transfers of these substances among components of the system.

• Ecosystem Service: societally important consequences of ecosystem processes (e.g., water purification, mitigation of floods, pollination of crops).

• Function: ecosystem process.

• Functional Group/Type: a group of species that is similar with respect to their impacts on community or ecosystem processes; also defined with respect to their similarity of response to a given environmental change.

• Resilience: rate at which a system returns to its reference state after a perturbation.

• Resistance: the ability of an ecosystem or community property to withstand a major disturbance or stress.

• Vulnerability: The propensity of social and ecological systems to have diminished functional capacity following exposure to external stresses and shocks.

This book is the culmination of the SCOPE Committee on Soil and Sediment Biodiversity and Ecosystem Functioning. It has been an integrative activity that has resulted in a preliminary synthesis of knowledge on the below-surface world that will provide information needed for scientists, managers, and policy makers who are addressing options for sustainable management of ecosystems. However, all the authors involved in this final SSBEF synthesis realize that this is only an initial attempt to fill in the gaps on the contribution of the below-surface biodiversity and ecosystem functions to the provision of those ecosystem services necessary for human well-being. We are hopeful that the priorities and needs noted throughout the book will be an impetus for additional quantitative research and syntheses on the linkages of the wealth of biodiversity beneath and above the surface to the provision of ecosystem services.

Waste Management And Control

Waste Management And Control

Get All The Support And Guidance You Need To Be A Success At Understanding Waste Management. This Book Is One Of The Most Valuable Resources In The World When It Comes To The Truth about Environment, Waste and Landfills.

Get My Free Ebook


Post a comment