Bibliography

7.10.1 Notes

Tables of bimolecular diffusion coefficients can be found in Vargaftik, and in Mason and Marrero. For more details regarding molecular diffusion in the atmosphere see Banks and Kockarts; and for the mathematical theory of diffusion see crank.

Atmospheric chemistry texts include: Mcewan and phillips; Brasseur and Solomon; Hobbs; Seifeld and pandis; Jacob; Warnek.

For more details on dry surface deposition of molecules see; Wesely; Wesely and Hicks; ganzeveld and Lelieveld; for wet and dry deposition see Warnek.

For surface emission rates of gases see Ipcc 2001; for molecular hydrogen see Novelli et al.

For more details on predissociation in molecules see; Lefebvre-Brion and Field. For absorption in the the Schumman-runge bands of oxygen see Allen and Frederick; Lewis et al.; and Murtagh. For the Herzberg continuum see Nicolet and Kennes. For photoionization of oxygen see Watanabe et al.; and Banks and Kockarts.

For further details regarding ozone absorption see Orphal and Chance for the HITRAN database. For water-vapour absorption see Lewis et al.; and the work of Yoshino et al.

Branching ratios for methane photolysis are given by; Mordaunt et al.; Mount et al.; and Toublanc et al.

For bimolecular collision theory consult; Vincenti and Kruger; Stevens; and Rosenberg.

Chemical reaction databases that can be easily accessed include: JPL, IUPAC, NIST, and UDfA.

For the role of water vapour on the destruction of mesospheric ozone see Allen et al.; Roble; and Vardavas et al. For nighttime/daytime ratios of ozone and OH see Vardavas et al.; for the diurnal averaging of nighttime/daytime effects see Turco and Whitten.

Mechanisms for the formation of thermospheric NO are discussed in: Barth; Bailey et al.; and Barth and Bailey.

Branching ratios for the three reaction channels for the reaction of H with HO2 are given in: Keyser 1986; and JPL 2006.

For the numerical solution of a system of coupled chemical rate equations see Vardavas, and Lavvas et al.

7.10.2 References and further reading

Allen, M. and Frederick, J. E. (1982). Effective photodissociation cross-sections for molecular oxygen and nitric oxide in the Schumann-Runge bands. J. Atmos. Sci., 39, 2066-2075.

Allen, M., Lunine, J. I. and Yung, Y. L. (1984). The vertical distribution of ozone in the mesosphere and lower atmosphere. J. Geophys. Res., 89, 4841-4872.

Bailey, S. M., Barth, C. A. and Solomon, S. C. (2002). A model of nitric oxide in the lower thermosphere. J. Geophys. Res., 107, doi:1029/2001JA000258.

Banks, P. M. and Kockarts, G. (1973). Aeronomy: Parts A and B. Academic Press, New York.

Barth, C. A. (1992). Nitric oxide in the lower thermosphere. Planet. Space Sci., 40, 315-336.

Barth, C. A. and Bailey, S. M. (2004). Comparison of a thermospheric photochemical model with Student Nitric Oxide Explorer (SNOE) observations of nitric oxide. J. Geophys. Res., 109, A03304.

Bass, A. M. and Paur, R. J. (1981). UV absorption cross-sections for ozone: The temperature dependence. J. Photochem., 17, 141-141.

Brasseur, G. M. and Solomon, S. (1984). Aeronomy of the middle atmosphere. D. Reidel, Dordrecht.

Brownsword, R. A., Hillenkamp, M., Laurent, T., Vatsa, R. K., Volpp, H.-R. and Wolfrum, J. (1997). Quantum yield for H atom formation in the methane dissociation after photoexcitation at the Lyman-a (121.6 nm) wavelength. Chem. Phys. Lett., 266, 259-266.

Chapman, S. (1930). On ozone and atomic oxygen in the upper atmosphere. Philos. Mag., 10, 369-383.

Crank, J. (1995). The mathematics of diffusion. Oxford University Press, Oxford.

Crutzen, P. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Met. Soc., 96, 320-325.

Crutzen P. (1971). Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res., 76, 7311-7327.

Dobson, G. M. B. (1931). A photoelectric spectrophotometer for measuring the amount of atmospheric ozone. Proc. Phys. Soc., 43, 324-339.

Ganzeveld, L. and Lelieveld, J. (1995). Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. J. Geophys. Res., 100, 20999-21012.

Griggs, M. (1968). Absorption coefficients of ozone in the ultraviolet and visible regions. J. Chem. Phys., 49, 857-859.

Hearn, A. G. (1961). The absorption of ozone in the ultraviolet and visible regions of the spectrum. Proc. Phys. Soc., 78, 932-940.

Herzberg, G. (1950). Molecular spectra and molecular structure: I. Spectra of diatomic molecules. 2nd ed., Van Nostrand, New York.

Hobbs, P. V. (2000). Introduction to atmospheric chemistry. Cambridge University Press, Cambridge.

IPCC, 2001: Climate change 2001: The scientific basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (ed.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IUPAC, 2006: Summary of evaluated kinetic and photochemical data for atmospheric chemistry. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson Jr, R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J.

and Troe, J. (ed.), Centre for Atmospheric Science, University of Cambridge. [http://www.iupac-kinetic.ch.cam.ac.uk/]

Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton University Press, Princeton.

Jensen, R. J., Guettler, R. D., Lyman, J. L. (1997). The ultraviolet absorption spectrum of hot carbon dioxide. Chem. Phys. Lett., 277, 356-360.

JPL 2006 : Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 15. NASA Panel for Data Evaluation: S. P. Sander, R. R. Friedl, A. R. Ravishankara, D. M. Golden, C. E. Kolb, M. J. Kurylo, J. Molina, G. K. Moortgat, H. Keller-Rudek, B. J.Finlayson-Pitts, P. H. Wine, R. E. Huie, and V. L. Orkin. Jet Propulsion Laboratory Publication 06-2, California Institute of Technology, Pasadena. [http://jpldataeval.jpl.nasa.gov/]

Karaiskou, A., Vallance, C., Papadakis, V., Vardavas, I. M., and Rakitzis, P. (2004). Absolute absorption cross-section measurements of CO2 in the ultraviolet from 200 to 206 nm at 295 K and 373 K. Chem. Phys. Lett., 400, 30-34.

Keyser, L. F. (1986). Absolute rate constant and branching fractions for the H + HO2 reaction from 240-300 K. J. Phys. Chem., 90, 2994-3003.

Lavvas, P. P., Coustenis, A. and Vardavas, I. M. (2007). Coupling photochemistry with haze formation in Titan's atmosphere. Part I: Model description. Planet. Space Sci., in press.

Lefebvre-Brion, H. and Field, R. W. (1986). Perturbations in the spectra of diatomic molecules. Academic Press, New York.

Lee, L. C., Philips, E. and Judge, D. L. (1977). Photoabsorption cross-sections for CH4, CF4, CF3Cl and C2F6. J. Chem. Phys., 67, 1237-1246.

Lewis, B. R. L., Vardavas, I. M. and Carver, J. H. (1983). The aeronomic dissociation of water vapor by solar H Lyman-a radiation. J. Geophys. Res., 88, 4935-4940.

Lewis, B. R. L. and Carver, J. H. (1983). Temperature dependence of the carbon dioxide photoabsorption cross-section between 1200 and 1970 A. J. Quant. Spectrosc. Radiat. Transfer, 30, 415-470.

Lewis, B. R. L., Gibson, S. T. and Dooley, P. M. (1994). Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen. J. Chem. Phys., 100, 7012-7035.

Mason, E. A. and Marrero, T. R. (1970). The diffusion of atoms and molecules, in: Bates, D. R., Esterman, I. (ed.), Advances in atomic and molecular physics. Academic Press, San Diego.

McElroy, M. B. and McConnell, J. C. (1971). Nitrous oxide: A natural source of stratospheric NO. J. Atmos. Sci., 28, 1095-1098.

McEwan, M. J. and Phillips, L. F. (1975). Chemistry of the atmosphere. Edward Arnold, London.

Molina, M. and Rowland, F. S. (1974). Stratospheric sink for chlorofluorometh-anes: chlorine atom-catalyzed destruction of ozone. Nature, 249, 810-812.

Mordaunt, D. H., Lambert, I. R., Morley, G. P., Ashfold, N. R. Dixon, R. N., Western, C. M., Schnieder, L. and Welge, K. H. (1993). Primary product channels in the photodissociation of methane at 121.6 nm, J. Chem. Phys., 98, 2054-2065.

Mount, G. H., Warden, E. S. and Moos, H. W. (1977). Photoabsorption cross-section of methane from 1400 to 1850 A. Astrophys. J. Lett., 214, L47-L49.

Murtagh, D. P. (1988). The O2 Schuman-Runge system - new calculations of photodissociation cross-sections. Planet. Space Sci., 36, 819-828.

Nicolet, M. and Kennes, R. (1986). Aeronomic problems of the molecular oxygen photodissociation-I: The O2 Herzberg continuum. Planet. Space Sci., 34, 10431059.

NIST, 2006: Chemical Kinetics Database on the Web. Standard Reference Database 17, Version 7.0, Release 1.4. A compilation of kinetics data on gas-phase reactions. [http://kinetics.nist.gov/kinetics/index.jsp]

Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., Myers, R. and Elkins, J. W. (1999). Molecular hydrogen in the troposphere: Global distribution and budget. J. Geophys. Res., 104, 30427-30444.

Okabe, H. (1978). Photochemistry of small molecules. John Wiley and Sons Inc., New York.

Orphal, J. and Chance, K. (2003). Ultraviolet and visible absorption cross-sections for HITRAN. J. Quant. Spec. Rad. Trans., 82, 491-504.

Parkinson, W. H. and Yoshino, K. (2003). Absorption cross-section measurements of water vapor in the wavelength region 181-199 nm. Chem. Phys., 294, 3135.

Roble, R. G. (1995). Energetics of the mesosphere and thermosphere. In The upper mesosphere and lower thermosphere: A review of experiment and theory. (ed.) R. M. Johnson, and T. L. Killeen, Geophysical Monograph 87, American Geophysical Union, Washington DC.

Rosenberg, R. M. (1977). Principles of physical chemistry. Oxford University Press, Oxford.

Samson, J. R., Haddad, G. N., Masuoka, T., Pareek, P. N. and Kilcoyne, D. A.

L. (1989). Ionization yields, total absorption, and dissociative photoionization cross-sections of CH4 from 110 to 950 A. J. Chem. Phys., 90, 6925-6932.

Seifeld, J. H. and Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons Inc., New York.

Stevens, B. (1970). Chemical kinetics for general students of chemistry. Chapman and Hall, London.

Strobel, D. F. (1989). Constraints on gravity-wave induced diffusion in the middle atmosphere. PAGEOPH, 130, 533-546.

Turco, R. P. and Whitten, R. C. (1978). A note on the diurnal averaging of aeronomical models. J. Atmos. Terr. Phys., 40, 13-20.

Toublanc, D., Parisot, J. P., Brillet, J., Gautier, D., Raulin, F. and McKay, C. P. (1995). Photochemical modeling of Titan's atmosphere. Icarus, 113, 2-26.

UDfA 2005: The UMIST database for Astrochemistry. see Le Teuff, Y.H. Millar, T. J. and Markwick, A. J. (2000). Astron. Astrophys. Suppl. Ser., 146, 157168. also Woodall, J., Agundez, M., Markwick-Kemper, A. J., and Millar, T. J. (2007). Astron. Astrophys., 466, 1197-1204. [http://www.udfa.net/]

Vardavas, I. M. (1984). Modelling reactive gas flows within shock tunnels. Aust. J. Phys., 37, 1-21.

Vardavas, I. M. and Carver, J. H. (1984). Solar and terrestrial parameterizations for radiative-convective models. Planet. Space Sci., 32, 1307-1325.

Vardavas, I. M., Carver, J. H. and Taylor, F. W. (1998). The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone. Ann. Geophysicae, 16, 189-196.

Vargaftik, N. B. (1975). Tables on the thermophysical properties of liquids and gases. John Wiley and Sons Inc, New York.

Vigroux, E. (1953). Contribution a l'etude experimentale de l'absorption l'ozone. Ann. Phys., 8, 709-762.

Vincenti, W. G. and Kruger, C. H. (1977). Introduction to physical gas dynamics. Krieger, New York.

Warnek, P. (1988). Chemistry of the natural atmosphere. Academic Press, New York.

Watanabe, K. E., Inn, C. Y. and Zelikoff, M. (1953). Absorption coefficients of oxygen in the vacuum ultraviolet. J. Chem. Phys., 21, 1026-1030.

Wesely, M. L. and Hicks, B. B. (2000). A review of the current status of knowledge on dry deposition. Atmos. Env., 34, 2261-2282.

Wesely, M. L. (1989). Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Env., 23, 1293-1304.

WMO 1995 and 1999. Scientific assessment of ozone depletion. Global Ozone Research and Monitoring Project, World Meteorological Organisation, Reports 37 and 44, Geneva.

Yoshino, K., Esmond, J. R., Parkinson, W. H., Ito, K. and Matsui, T. (1996). Absorption cross-section measurements of water vapour in the wavelength region 120 to 188 nm. Chem. Phys., 211, 387-391.

Was this article helpful?

0 0
Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment