Daily Temperature Range DTR

Eg# is directly related to maximum mid-day temperatures since it heats the surface. The same factors that reduce Eg#, that is, clouds, haze and aerosols, increase downwelling long-wave radiation at night leading to higher nighttime, or minimum daily temperatures. Therefore, it is no surprise that Eg# is significantly correlated with daily temperature range (DTR, [82]). Various episodes of temperature changes that correspond to sudden changes in atmospheric aerosol loading have been reported. One dramatic demonstration of the influence of aerosol on DTR was shown by Travis et al. [83], who studied climate data for the period of the World Trade Centre tragedy in September 2001. During the three days that air traffic in the US was grounded there were no atmospheric contrails, leading to increased Eg# and an increase of °C in DTR. Stanhill and Moreshet [34] found an average 18% increase in Eg# during Yom Kippur (the Day of Atonement) in Israel, which is a one day Jewish holiday in the fall when industries close and car use is minimal. Analysis of data from 1963 2003 shows that average daily total DTR increased on Yom Kippur by 0.31 °C (Stanhill and Cohen, unpublished data). Robock and Mass [84] and Mass and Robock [85] showed that tropospheric aerosol loading from the 1980 Mt. St. Helens volcanic eruption strongly reduced the diurnal temperature range for several days in the region with the volcanic dust, and surface temperature effects under smoke from forest fires was correlated with a reduction in daytime temperatures [86,87].

Global surface temperatures have been increasing since the beginning of the industrial era. As noted by Roderick and Farquhar [66] minimum temperatures have been increasing faster than maximum temperatures and thus DTR has been decreasing. This may also be related to decreasing surface radiation.

Wild et al. [88] used DTR to analyse the influence of changes in Eg# on global temperatures. They contend that global dimming masked global warming until the 1980s and that during the global brightening era the accelerating temperature increases demonstrate the full (unmasked) global warming that is caused by greenhouse gases.

5.5. Wind Speed and the Monsoon System

Another mechanism for the influence of changes in Eg# on climate is sea warming and its influence on wind speed and the monsoon rain system [89]. Xu et al. [90] showed that wind speeds over China have decreased because of dimming. This is related to the increased atmospheric stability caused by aerosol mediated warming of the atmosphere as surface radiation decreases. Thus, aerosols over China changed the land-ocean temperature contrast, affecting monsoon winds.

6. CONCLUSIONS

Global radiation Eg# decreased significantly (i.e. dimming) from the beginning of widespread measurements in the 1950s to the late 1980s over large parts of the globe and then partly recovered (i.e. brightening) in many places. The areal extent of these changes is not certain because of the large spatial variability, but the mean trends are evident in satellite estimates of global radiation. The trends are apparently caused by anthropogenic aerosols which reduce surface short wave radiation directly and indirectly through their influence on cloud properties. Changes in Eg# have played a part in regional and global changes in DTR (positively correlated) as well as soil moisture (negatively correlated) and potential evaporation rates (positively correlated), but in some cases potential evaporation has changed due to other factors. Dimming may have offset global warming between the 1950s and 1980s while the more recent brightening may have unmasked the full extent of global warming, as seen in the accelerated temperature increase since the early 1990s.

REFERENCES

1. WMO. Measurement of Radiation. Chapter 7, in: Guide to Meteorological Instruments and Methods of Observation. WMO No. 8 (Draft Seventh edition). World Meteorological Organi zation, Geneva, 2006.

2. J.L. Monteith, M.H. Unsworth. Principles of Environmental Physics, 2nd ed., Arnold publish ers, London, 1990.

3. P.R. Goode, E. Palle, J. Atmos. Solar Terrestrial Phys. 69 (2007) 1556 1568.

5. R.J. List (Ed.), Smithsonian Meteorological Tables, sixth ed., Smithsonian Institute, Washington, DC, 1966.

6. G.S. Campbell, J.M. Norman, An Introduction to Environmental Biophysics, second ed., Springer Verlag, NewYork, 1998.

7. G.W. Paltridge, C.M.R. Platt, Radiative Processes in Meteorology and Climatology, Elsevier, New York, 1976.

8. A. Raval, V. Ramanathan, Nature 342 (1989) 758 761.

9. B.A. Wielicki, T. Wong, N. Loeb, P. Minnis, K. Priestley, R. Kandel, Science 308 (2005) 825.

10. V. Ramanathan, iLEAPS Newsletter 5 (2008) 18 20.

11. B.R. Barkstrom, in: Bruce R. Barkstrom (Ed.), Earth radiation budget measurements: pre ERBE, ERBE, and CERES. Long Term Monitoring of the Earth's Radiation Budget, Proc. SPIE 1299, pp. 52 60, 1990.

12. W.B. Rossow, Y. C. Zhang, J. Geophys. Res. 100 (1995) 1167 1197, doi:10.1029/ 94JD02746.

13. E. Palle, P.R. Goode, P. Montanes Rodriguez, S.E. Koonin, Science 304 (2004) 1299 1301.

14. E. Palle, P. Montanes Rodriguez, P.R. Goode, S.E. Koonin, M. Wild, S. Casadio, Geophys. Res. Lett., 32, (2005) L21702, doi:10.1029/2005GL023847.

15. P.R. Goode, E. Palle', J. Atmos Solar Terrestrial Phys., 69 (2007) 1556 1568.

16. A. Ohmura, New radiation and energy balance of the world and its variability, in: H. Fischer, B. Sohn (Eds.), IRS 2004: Current Problems in Atmospheric Radiation, pp. 327 330, 2006.

17. J.T. Kiehl, K.E. Trenberth, Bull. Amer. Meteor. Soc. 78 (1997) 197 208.

18. G. Stanhill, S. Cohen, J. Clim. 18 (2005) 1503 1512.

19. G. Stanhill, S. Cohen, J. Met. Soc. Jpn. 86 (2008) 57 67.

21. D.J. Hatch, J. Meteorol. U.K. 6 (1981) 101 113.

22. E. Palle, C.J. Butler, Int. J. Climatol. 21 (2001) 709 729.

23. G. Stanhill, S. Cohen, Agric. For. Meteorol. 107 (2001) 255 278.

24. A. Ohmura, H. Gilgen, M. Wild, Global Energy Balance Archive GEBA, World Climate Program Water Project A7, Report 1: Introduction. Zuercher Geografische Schriften Nr. 34, Verlag der Fachvereine, Zurich, 1989.

25. A. Ohmura, H. Gilgen, H. Hegner, G. Muller, M. Wild, E.G. Dutton, B. Forgan, C. Frohlich, R. Philipona, A. Heimo, G. Konig Langlo, B. McArthur, R. Pinker, C.H. Whitlock, K. Dehne, Bull. Amer. Meteor. Soc. 79 (1998) 2115 2136.

26. M. Budyko, The heat balance of the Earth's surface. (translated by Nina A. Stepnova from: Teplovoi balans zemnoi poverkhnosti; Gidrometeorologicheskoe iz datel'stovo. Leningrad) U.S. Dept. Commerce, Washington, DC, 1956.

27. W.D. Sellers, Physical Climatology, The University of Chicago Press, Chicago, 1965.

29. S. Suraqui, H. Tabor, W.H. Klein, B. Goldberg, Solar Energy 16 (1974) 155 158.

30. A. Ohmura, H. Lang, Secular variation of global radiation over Europe, in: J. Lenoble, J.F. Geleyn (Eds.), Current Problems in Atmospheric Radiation, pp. 98 301, Deepak, Hampton, VA, 1989.

32. G. Stanhill, S. Moreshet, Clim. Change 21 (1992) 57 75.

33. G. Stanhill, J.D. Kalma, Austr. Met. Mag. 43 (1994) 81 86.

34. G. Stanhill, S. Moreshet, Clim. Change 26 (1994) 89 103.

35. G. Stanhill, Phil. Trans. R. Soc. A 352 (1995) 247 258.

36. G. Stanhill, S. Cohen, J. Clim. 10 (1997) 2078 2086.

37. G. Stanhill, A. Ianitz, Tellus 49 B (1997) 112 122.

38. G. Stanhill, Int. J. Climatol. 18 (1998) 1015 1030.

39. G. Stanhill, J.D. Kalma, Int. J. Climatol. 15 (1995) 933 941.

40. X. Li, X. Zhou, W. Li, Acta. Met. Sin. 9 (1995) 57 68.

41. G.M. Abakumova, E.M. Feigelson, V. Bussak, V.V. Stadnik, J. Clim. 9 (1996) 1319 1327.

42. B.G. Liepert, Int. J. Climatol. 17 (1997) 1581 1593.

43. B.G. Liepert, G.J. Kukla, J. Clim. 10 (1997) 2391 2400.

44. H. Gilgen, M. Wild, A. Ohmura, J. Clim. 11 (1998) 2042 2061.

45. B.G. Liepert, U. Lohmann, J. Clim. 14 (2001) 1078 1091.

46. M. Wild, H. Gilgen, A. Roesch, A. Ohmura, C.N. Long, E.G. Dutton, B. Forgan, A. Kallis, V. Russak, A. Tsvetkov, Science 308 (2005) 847 850.

47. R.T. Pinker, B. Zhang, E.G. Dutton, Science 308 (2005) 850 854.

48. A. Sanchez Lorenzo, M. Brunetti, J. Calbo, J. Martin Vide, J. Geophys. Res. 112 (2007) D20115, doi:10.1029/2007JD008677.

49. V. Ramanathan, P.J. Crutzen, J.T. Kiehl, D. Rosenfeld, Science 294 (2001) 2119.

50. Y. Qian, D.P. Kaiser, L.R. Leung, M. Xu, Geophys. Res. Lett. 33 (2006) L01812, doi:10.1029/2005GL024586.

51. P. Alpert, P. Kishcha, Y.J. Kaufman, R. Schwarzbard, Geophys. Res. Lett. 32 (2005) L17802, doi:10.1029/2005GL023320.

52. J.R. Norris, J. Geophys. Res. 110 (2005) D08206, doi:10.1029/2004JD005600.

53. J.R. Norris, M. Wild, J. Geophys. Res. 112 (2007) D08214, doi:10.1029/2006JD007794.

54. M. Wild, H. Gilgen, A. Roesch, A. Ohmura, C.N. Long, E.G. Dutton, B. Forgan, A. Kallis, V. Russak, A. Tsvetkov, Science 308 (2005) Supporting online material. http://www.science mag.org/cgi/data/308/5723/847/DC1/1.

55. B.G. Liepert, I. Tegen. J. Geophys. Res. Atm. 107 (D12) (2002) 4153 4168.

56. D.G. Streets, Y. Wu, M. Chin, Geophys. Res. Lett. 33 (2006) L15806, doi:10.1029/ 2006GL026471.

57. S.K. Satheesh, V. Ramanathan, Nature 405 (2000) 60 63.

58. A. Romanou, B. Liepert, G.A. Schmidt, W.B. Rossow, R.A. Ruedy, Y.C. Zhang, Geophys. Res. Lett. 34 (2007) L05713, doi:10.1029/2006GL028356.

59. M.M. Kvalevag, G. Myhre, J. Clim. 20 (2007) 4874 4883.

60. WMO, Measurement of evaporation. Chapter 10. In: Guide to Meteorological Instruments and Methods of Observation. WMO No. 8 (Draft Seventh edition). World Meteorological Organization, Geneva. 2006.

61. J.L. Monteith. Evaporation and environment, in: G.E. Fogg (Ed.), The State and Movement of Water in Living Organisms, pp. 205 234, Cambridge University Press. Cambridge, U.K., 1965.

62. T.C. Peterson, V.S. Golubev, P.Y. Groisman, Nature 377 (1995) 687 688.

63. V.S. Golubev, J.H. Lawrimore, P. Ya. Groisman, N.A. Speranskaya, S.A. Zhuravin, M.J. Menne, T.C. Peterson, R.W. Malone, Geophys. Res. Lett. 28 (2001) 2665 2668.

64. W. Brutsaert, M.B. Parlange, Nature 396 (1998) 30.

65. S. Cohen, A.Ianitz, G.Stanhill, Agric. For. Meteorol. 111 (2002) 83 91.

66. M.L. Roderick, G.D. Farquhar, Science 298 (2002) 1410 1411.

67. M.L. Roderick, G.D. Farquhar, Int. J. Climatol., 24 (2004) 1077 1090.

68. M.L. Roderick, L.D. Rotstayn, G.D. Farquhar, M.T. Hobbins, Geophys. Res. Lett. 34 (2007) L17403, doi:10.1029/2007GL031166.

69. R.J. Bouchet, Evapotranspiration re'elle evapotranspiration potentielle, signification clima tique, Symp. Publ. 62, Int. Assoc. Sci. Hydrol., Berkeley, CA, pp. 134 142, 1963.

70. W. Brutsaert, Evaporation into the Atmosphere: Theory, History and Applications, D. Reidel Publishing Co., Dordrecht, Holland, 1982.

71. S.B. Chen, Y.F. Liu, A. Thomas, Clim. Change 76 (2006) 291 319.

72. Y. Zhang, C. Liu, Y. Tang, Y. Yang, J. Geophys. Res. 112 (2007), D12110, doi:10.1029/ 2006JD008161.

73. W. Brutsaert, Geophys. Res. Lett. 33 (2006) L20403, doi:10.1029/2006GL027532.

74. A. Robock, M. Mu, K. Vinnikov, I.V. Trofimova, T.I. Adamenko, Geophys. Res. Lett. 32

(2005) L03401 doi:10.1029/2004GL021914.

75. S. Manabe, R.T. Wetherald, J. Atmos. Sci. 44 (1987) 1211 1235.

76. J.M. Gregory, J.F.B. Mitchell, A.J. Brady, J. Clim. 10 (1997) 662 686.

77. A. Robock, H. Li, Geophys. Res. Lett. 33 (2006) L20708, doi:10.1029/2006GL027585.

78. V. Ramanathan, C. Chung, D. Kim, T. Bettge, L. Buja, J.T. Kiehl, W.M. Washington, Q. Fu, D.R. Sikka, M. Wild, Proc. Natl. Acad. Sci. USA 102 (2005) 5326 5333.

79. B.G. Liepert, J. Feichter, U. Lohmann, E. Roeckner, Geophys. Res. Lett. 31 (2004) L06207, doi:10.1029/2003GL019060.

80. M. Wild, A. Ohmura, H. Gilgen, D. Rosenfeld, Geophys. Res. Lett. 31 (2004) L11201, doi:10.1029/2003GL019188.

81. D. Rosenfeld, Science, 287 (2000) 1796 2793.

82. K.L. Bristow, G.S. Campbell, Agric. For. Meteorol. 31 (1984) 159.

83. D.J. Travis, A.M. Carleton, R.G. Lauritsen, Nature 418 (2002) 601.

84. A. Robock, C. Mass, Science 216 (1982) 628 630.

85. C. Mass, A. Robock, Mon. Wea. Rev. 110 (1982) 614 622.

87. A. Robock, J. Geophys. Res. 96 (D11) (1991) 20,869 20,878.

88. M. Wild, A. Ohmura, K. Makowski, Geophys. Res. Lett. 34 (2007) L04702, doi:10.1029/ 2006GL028031.

89. L.D. Rotstayn, U. Lohmann, J. Clim. 15 (2002) 2103 2116.

90. M. Xu, C.P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, H. Zhang, J. Geophys. Res. 111

(2006) D24111, doi:10.1029/2006JD007337.

91. S. Cohen, B. Liepert, G. Stanhill, EOS 85 (2004) 362.

92. R. Gifford (Ed.) Pan evaporation: An example of the detection and attribution of trends in cli mate variables. Australian Academy of Science, National Committee for Earth System Sci ence. Proceedings of a workshop, Canberra, 22 23 November 2004, 2005.

93. G. Ohring, S. Cohen, J. Norris, A. Robock, Y. Rudich, M. Wild, W. Wiscombe, EOS, 89 (2008) 212 and supplemental material at http://www.agu.org/eos elec/2008/ohring 89 23. html

94. M. Wild, N. Loeb, G. Stanhill, B. Liepert, P. Alpert, J. Calbo, C. Long, G. Ohring, E. Palle, P. Kishcha, Measurements of GDB. Workgroup 1 report at the ISF International Workshop on GDB, Ein Gedi, Israel. 2008.

95. B.G. Liepert, Geophys. Res. Lett. 29 (2002) 1421, doi:10.1029/2002GL014910.

96. E.G. Dutton, D.W. Nelson, R.S. Stone, D. Longenecker, G. Carbaugh, J.M. Harris, J. Wendell, J. Geophys. Res. 111 (2006) D19101, doi:10.1029/2005JD006901.

97. N. Hatzianastassiou, C. Matsoukas, A. Fotiadi, K.G. Pavlakis, E. Drakakis, D. Hatzidimitriou, I. Vardavas, Atmos. Chem. Phys. 5 (2005) 2847 2867.

0 0

Post a comment