Info

Physical

Biological

Number of significant observed changes

Number of significant observed changes

Percentage of significant changes consistent with warming

Percentage of significant changes consistent with warming

Polar regions include also observed changes in marine and freshwater biological systems.

' Marine and freshwater includes observed changes at sites and large areas in oceans, small islands and continents. Locations of large-area marine changes are not shown on the map. ' Circles In Europe represent 1 to 7,500 data series.

Figure TS.1. Locations of significant changes in data series of physical systems (snow, ice and frozen ground; hydrology; and coastal processes) and biological systems (terrestrial, marine and freshwater biological systems), are shown together with surface air temperature changes over the period 1970-2004. A subset of about 29,000 data series was selected from about 80,000 data series from 577 studies. These met the following criteria: (i) ending in 1990 or later; (ii) spanning a period of at least 20 years; and (iii) showing a significant change in either direction, as assessed in individual studies. These data series are from about 75 studies (of which about 70 are new since the Third Assessment) and contain about 29,000 data series, of which about 28,000 are from European studies. White areas do not contain sufficient observational climate data to estimate a temperature trend. The 2x2 boxes show the total number of data series with significant changes (top row) and the percentage of those consistent with warming (bottom row) for (i) continental regions: North America (NAM), Latin America (LA), Europe (EUR), Africa (AFR), Asia (AS), Australia and New Zealand (ANZ), and Polar Regions (PR); and (ii) global scale: Terrestrial (TER), Marine and Freshwater (MFW), and Global (GLO). The numbers of studies from the seven regional boxes (NAM,..., PR) do not add up to the global (GLO) totals because numbers from regions except Polar do not include the numbers related to Marine and Freshwater (MFR) systems. Locations of large-area marine changes are not shown on the map. [F1.8, F1.9; Working Group IAR4 F3.9b]

ocean acidification on the marine biosphere are as yet undocumented [1.3]. Warming of lakes and rivers is affecting abundance and productivity, community composition, phenology and the distribution and migration of freshwater species (high confidence) [1.3.4].

Effects of regional increases in temperature on some managed and human systems are emerging, although these are more difficult to discern than those in natural systems, due to adaptation and non-climatic drivers.

Effects have been detected in agricultural and forestry systems [1.3.6]. Changes in several aspects of the human health system have been related to recent warming [ 1.3.7]. Adaptation to recent warming is beginning to be systematically documented (medium confidence) [1.3.9].

In comparison with other factors, recent warming has been of limited consequence in the agriculture and forestry sectors. A significant advance in phenology, however, has been observed for agriculture and forestry in large parts of the Northern Hemisphere, with limited responses in crop management such as earlier spring planting in northern higher latitudes. The lengthening of the growing season has contributed to an observed increase in forest productivity in many regions, while warmer and drier conditions are partly responsible for reduced forest productivity and increased forest fires in North America and the Mediterranean Basin. Both agriculture and forestry have shown vulnerability to recent trends in heatwaves, droughts and floods (medium confidence) [ 1.3.6].

While there have been few studies of observed health effects related to recent warming, an increase in high temperature extremes has been associated with excess mortality in Europe, which has prompted adaptation measures. There is emerging evidence of changes in the distribution of some human disease vectors in parts of Europe and Africa. Earlier onset and increases in the seasonal production of allergenic pollen have occurred in mid- and high latitudes in the Northern Hemisphere (medium confidence) [ 1.3.7].

Changes in socio-economic activities and modes of human response to climate change, including warming, are just beginning to be systematically documented. In regions of snow, ice and frozen ground, responses by indigenous groups relate to changes in the migration patterns, health, and range of animals and plants on which they depend for their livelihood and cultural identity [1.3.9]. Responses vary by community and are dictated by particular histories, perceptions of change and range, and the viability of options available to groups (medium confidence) [1.3.9].

While there is now significant evidence of observed changes in physical and biological systems in every continent, including Antarctica, as well as from most oceans, the majority of studies come from mid- and high latitudes in the Northern Hemisphere. Documentation of observed changes in tropical regions and the Southern Hemisphere is sparse [1.5].

0 0

Post a comment