C31 Introduction

C3.1.1 Deltas and megadeltas: hotspots for vulnerability (Chapter 6, Box 6.3)

Deltas, some of the largest sedimentary deposits in the world, are widely recognised as being highly vulnerable to the impacts of climate change, particularly sea-level rise and changes in runoff, as well as being subject to stresses imposed by human modification of catchment and delta plain land use. Most deltas are already undergoing natural subsidence that results in accelerated rates of relative sea-level rise above the global average. Many are impacted by the effects of water extraction and diversion, as well as declining sediment input as a consequence of entrapment in dams. Delta plains, particularly those in Asia (see C3.2.1), are densely populated, and large numbers of people are often impacted as a result of external terrestrial influences (river floods, sediment starvation) and/or external marine influences (storm surges, erosion) (see Figure 6.1).

Ericson et al. (2006) estimated that nearly 300 million people inhabit a sample of 40 deltas globally, including all the large megadeltas. Average population density is 500 people/km2, with the largest population in the Ganges-Brahmaputra delta, and the highest density in the Nile delta. Many of these deltas and megadeltas are associated with significant and expanding urban areas. Ericson et al. (2006) used a generalised modelling approach to approximate the effective rate of sea-level rise under present conditions, basing estimates of sediment trapping and flow diversion on a global dam database, and modifying estimates of natural subsidence to incorporate accelerated human-induced subsidence. This analysis showed that much of the population of these 40 deltas is at risk through coastal erosion and land loss, primarily as a result of decreased sediment delivery by the rivers, but also through accentuated rates of sea-level rise. They estimate, using a coarse digital terrain model and global population distribution data, that more than 1 million people will be directly affected by 2050 in three megadeltas: the Ganges-Brahmaputra delta in Bangladesh, the Mekong delta in Vietnam and the Nile delta in Egypt. More than 50,000 people are likely to be directly impacted in each of a further nine deltas, and more than 5,000 in each of a further twelve deltas (Figure C3.1). This generalised modelling approach indicates that 75% of the population affected live on Asian megadeltas and deltas, and a large proportion of the remainder are on deltas in Africa. These impacts would be exacerbated by accelerated sea-level rise and enhanced human pressures (see, e.g., C3.2.1). Within the Asian megadeltas, the surface topography is complex as a result of the geomorphological development of the deltas, and the population distribution shows considerable spatial variability, reflecting the intensive land use and the growth of some of the world's largest megacities (Woodroffe et al., 2006). Many people in these and other deltas worldwide are already subject to flooding from both storm surges and seasonal river floods, and therefore it is necessary to develop further methods to assess individual delta vulnerability (e.g., Sánchez-Arcilla et al., 2007).

Mississippi àrijalva

Jrinoco nazon

• •Sebou Moulouya •Senegal Volta • • Niger

Shaft el Arab

Ganges Brahmaputra

Indus

Nile

Mahanadi , Godavari. Krishna

» Sao Francisco

9 Extreme

Changjiang

^Mekong

Figure C3.1. Relative vulnerability of coastal deltas as shown by the indicative population potentially displaced by current sea-level trends to 2050 (Extreme = >1 million; High = 1 million to 50,000; Medium = 50,000 to 5,000; following Ericson et al., 2006).

0 0

Post a comment