Adaptation practices options and constraints

The U.S. and Canada are developed economies with extensive infrastructure and mature institutions, with important regional and socio-economic variations (NAST, 2000; Lemmen and Warren, 2004). These capabilities have led to adaptation and coping strategies across a wide range of historic conditions, with both successes and failures. Most studies on adaptive strategies consider implementation based on past experiences (Paavola and Adger, 2002). Examples of adaptation based on future projections are rare (Smit and Wall, 2003; Devon, 2005). Expanding beyond reactive adaptation to proactive, anticipatory adaptive strategies presents many challenges. Progress toward meeting these challenges is just beginning in North America.

14.5.1 Practices and options

Canada and the U.S. emphasise market-based economies. Governments often play a role implementing large-scale adaptive measures, and in providing information and incentives to support development of adaptive capacity by private decision makers (UNDP, 2001; Michel-Kerjan, 2006). In practice, this means that individuals, businesses and community leaders act on perceived self interest, based on their knowledge of adaptive options. Despite many examples of adaptive practices in North America, under-investment in adaptation is evident in the recent rapid increase in property damage due to climate extremes (Burton and Lim, 2005; Epstein and Mills, 2005) and illustrates the current adaptation deficit.

Adaptation by individuals and private businesses

Research on adaptive behaviour for coping with projected climate change is minimal, though several studies address adaptations to historic variation in the weather. About 70% of businesses face some weather risk. The impact of weather on businesses in the U.S. is an estimated US$200 billion/yr (Lettre, 2000). Climate change may also create business opportunities. For example, spending on storm-worthiness and construction of disaster-resilient homes (Koppe et al., 2004; Kovacs, 2005b; Kunreuther, 2006) increased substantially after the 2004 and 2005 Atlantic hurricanes, as did the use of catastrophe bonds (CERES, 2004; Byers et al., 2005; Dlugolecki, 2005; Guy Carpenter, 2006).

Businesses in Canada and the U.S. are investing in climate-relevant adaptations, though few of these appear to be based on projections of future climate change. For example:

• Insurance companies are introducing incentives for homeowners and businesses that invest in loss prevention strategies (Kim, 2004; Kovacs, 2005b).

• Insurance companies are investing in research to prevent future hazard damage to insured property, and to adjust pricing models (Munich Re., 2004; Mills and Lecomte, 2006).

• Ski resort operators are investing in lifts to reach higher altitudes and in snow-making equipment (Elsasser et al., 2003; Census Bureau, 2004; Scott, 2005; Jones and Scott, 2006; Scott et al., 2007a).

• With highly detailed information on weather conditions, farmers are adjusting crop and variety selection, irrigation strategies and pesticide application (Smit and Wall, 2003).

• The forest resources sector is investing in improved varieties, forest protection, forest regeneration, silvicultural management and forest operations (Loehle et al., 2002; Spittlehouse and Stewart, 2003).

Adaptation by governments and communities

Many North American adaptations to climate-related risks are implemented at the community level. These include efforts to minimise damage from heatwaves, droughts, floods, wildfires or tornados. These actions may entail land-use planning, building code enforcement, community education and investments in critical infrastructure (Burton et al., 2002; Multihazard Mitigation Council, 2005).

Flooding and drought present recurring challenges for many North American communities (Duguid, 2002). When the City of Peterborough, Canada, experienced two 100-year flood events within three years, it responded by flushing the drainage systems and replacing the trunk sewer systems to meet more extreme 5-year flood criteria (Hunt, 2005). Recent droughts in six major U.S. cities, including New York and Los Angeles, led to adaptive measures involving investments in water conservation systems and new water supply-distribution facilities (Changnon and Changnon, 2000). To cope with a 15% increase in heavy precipitation, Burlington and Ottawa, Ontario, employed both structural and non-structural measures, including directing downspouts to lawns to encourage infiltration and increasing depression and street detention storage (Waters et al., 2003).

Some large cities (e.g., New Orleans) and important infrastructure (e.g., the only highway and rail link between Nova Scotia and the rest of Canada) are located on or behind dykes that will provide progressively less protection unless raised on an ongoing basis. Some potential damages may be averted through redesigning structures, raising the grade, or relocating (Titus, 2002). Following the 1996 Saguenay flood and 1998 ice storm, the province of Québec modified the Civil Protection Act and now requires municipalities to develop comprehensive emergency management plans that include adaptation strategies (McBean and Henstra, 2003). More communities are expected to re-examine their hazard management systems following the catastrophic damage in New Orleans from Hurricane Katrina (Kunreuther et al., 2006).

Rapid development and population growth are occurring in many coastal areas that are sensitive to storm impacts (Moser, 2005). While past extreme events have motivated some aggressive adaptation measures (e.g., in Galveston, Texas) (Bixel and Turner, 2000), the passage of time, new residents, and high demand for waterfront property are pushing coastal development into vulnerable areas.

Climate change will likely increase risks of wildfire (see Box 14.1). FireWise and FireSmart are programmes promoting wildfire safety in the U.S. and Canada, respectively (FireSmart, 2005; FireWise, 2005). Individual homeowners and businesses can participate, but the greatest reduction in risk will occur in communities that take a comprehensive approach, managing forests with controlled burns and thinning, promoting or enforcing appropriate roofing materials, and maintaining defensible space around each building (McGee et al., 2000).

Public institutions are responsible for adapting their own legislation, programmes and practices to appropriately anticipate climate changes. The recent Québec provincial plan, for example, integrates climate change science into public policy. Public institutions can also use incentives to encourage or to overcome disincentives to investment by private decision makers (Moser, 2006). Options, including tax assistance, loan guarantees and grants, can improve resilience to extremes and reduce government costs for disaster management (Moser,

2005). The U.S. National Flood Insurance Program is changing its policy to reduce the risk of multiple flood claims, which cost the programme more than US$200 million/yr (Howard, 2000). Households with two flood-related claims are now required to elevate their structure 2.5 cm above the 100-year flood level, or relocate. To complement this, a 5-year, US$1 billion programme to update and digitise flood maps was initiated in 2003 (FEMA,

2006). However, delays in implementing appropriate zoning can encourage accelerated, maladapted development in coastal communities and flood plains.

14.5.2 Mainstreaming adaptation

One of the greatest challenges in adapting North America to climate change is that individuals often resist and delay change (Bacal, 2000). Good decisions about adapting to climate change depend on relevant experience (Slovic, 2000), socio-economic factors (Conference Board of Canada, 2006), and political and institutional considerations (Yarnal et al., 2006; Dow et al., 2007). Adaptation is a complex concept (Smit et al., 2000; Dolan and Walker, 2006), that includes wealth and several other dimensions.

Experience and knowledge

The behaviour of people and systems in North America largely reflects historic climate experience (Schipper et al., 2003), which has been institutionalised through building codes, flood management infrastructure, water systems and a variety of other programmes. Canadian and U.S. citizens have invested in buildings, infrastructure, water and flood management systems designed for acceptable performance under historical conditions (Bruce, 1999; Co-operative Programme on Water and Climate, 2005; UMA Engineering, 2005; Dow et al., 2007). Decisions by community water managers (Rayner et al., 2005; Dow et al., 2007) and set-back regulations in coastal areas (Moser, 2005) also account for historic experience but rarely incorporate information about climate change or sea-level rise. In general, decision makers lack the tools and perspectives to integrate future climate, particularly events that exceed historic norms (UNDP, 2001).

Examples of adaptive behaviour influenced exclusively or predominantly by projections of climate change are largely absent from the literature, but some early steps toward planned adaptation have been taken by the engineering community, insurance companies, water managers, public health officials, forest managers and hydroelectric producers. Some initiatives integrate consideration of climate change into the environmental impact assessment process. Philadelphia, Toronto and a few other communities have introduced warning programmes to manage the health threat of heatwaves (Kalkstein, 2002). The introduction of Toronto's heat/health warning programme was influenced by both climate projections and fatalities from past heatwaves (Koppe et al., 2004; Ligeti, 2006).

Weather extremes can reveal a community's vulnerability or resilience (RMS, 2005a) and provide insights into potential adaptive responses to future events. Since the 1998 ice storm, Canada's two most populous provinces, Ontario and Québec, have strengthened emergency preparedness and response capacity. Included are comprehensive hazard-reduction measures and loss-prevention strategies to reduce vulnerability to extreme events. These strategies may include both public information programmes and long-term strategies to invest in safety infrastructure (McBean and Henstra, 2003). Adaptive behaviour is typically greater in the communities that recently experienced a natural disaster (Murphy et al., 2005). But the near absence of any personal preparedness following the 2003 blackout in eastern North America demonstrated that adaptive actions do not always follow significant emergencies (Murphy, 2004).

Socio-economic factors

Wealthier societies tend to have greater access to technology, information, developed infrastructure, and stable institutions (Easterling et al., 2004), which build capacity for individual and collective action to adapt to climate change. But average economic status is not a sufficient determinant of adaptive capacity (Moss et al., 2001). The poor and marginalised in Canada and the U.S. have historically been most at risk from weather shocks (Turner et al., 2003), with vulnerability directly related to income inequality (Yohe and Tol, 2002). Differences in individual capacity to cope with extreme weather were evident in New Orleans during and after Hurricane Katrina (Kunreuther et al., 2006), when the large majority of those requiring evacuation assistance were either poor or in groups with limited mobility, including elderly, hospitalised and disabled citizens (Murphy et al., 2005; Kumagi et al., 2006; Tierney, 2006).

Political and institutional capacity for autonomous adaptation

Public officials in Canada and the U.S. typically provide early and extensive assistance in emergencies. Nevertheless, emergency response systems in the U.S. and Canada are based on the philosophy that households and businesses should be capable of addressing their own basic needs for up to 72 hours after a disaster (Kovacs and Kunreuther, 2001). The residents' vulnerability depends on their own resources, plus those provided by public service organisations, private firms and others (Fischhoff, 2006). When a household is overwhelmed by an extreme event, household members often rely on friends, family and other social networks for physical and emotional support (Cutter et al., 2000; Enarson, 2002; Murphy, 2004). When a North American community responds to weather extremes, non-governmental organisations often coordinate support for community-based efforts (National Voluntary Organizations Active in Disaster, 2006).

An active dialogue among stakeholders and political institutions has the potential to clarify the opportunities for adaptation to changing climate. However, public discussion about adaptation is at an early stage in the U.S. and Canada (Natural Resources Canada, 2000), largely because national governments have focused public discussion on mitigation, with less attention to adaptation (Moser, 2005). Some public funds have been directed to research on impacts and adaptation, and both countries have undertaken national assessments with a synthesis of the adaptation literature, but neither country has a formal adaptation strategy (Conference Board of Canada, 2006). Integrating perspectives on climate change into legislation and regulations has the potential to promote or constrain adaptive behaviour (Natural Resources Canada, 2000). North American examples of public policies that influence adaptive behaviour include water allocation law in the western U.S. (Scheraga, 2001), farm subsidies (Goklany, 2007), public flood insurance in the U.S. (Crichton, 2003), guidance on preservation of wetlands and emergency management.

14.5.3 Constraints and opportunities

Social and cultural barriers

High adaptive capacity, as in most of North America, should be an asset for coping with or benefiting from climate change. Capacity, however, does not ensure positive action or any action at all. Societal values, perceptions and levels of cognition shape adaptive behaviour (Schneider, 2004). In North America, information about climate change is usually not 'mainstreamed' or explicitly considered (Dougherty and Osaman Elasha, 2004) in the overall decision-making process (Slovic, 2000; Leiss, 2001). This can lead to actions that are maladapted, for example, development near floodplains or coastal areas known to be vulnerable to climate change. Water managers are unlikely to use climate forecasts, even when they recognise the vulnerability, unless the forecast information can fit directly into their everyday management decisions (Dow et al., 2007).

Informational and technological barriers

Uncertainty about the local impacts of climate change is a barrier to action (NRC, 2004). Incomplete knowledge of disaster safety options (Murphy, 2004; Murphy et al., 2005) further constrains adaptive behaviour. Climate change information must be available in a form that fits the needs of decision-makers. For example, insurance companies use climate models with outputs specifically designed to support decisions related to the risk of insolvency, pricing and deductibles, regulatory and rating agency considerations, and reinsurance (Swiss Re, 2005a). Some electrical utilities have begun to integrate climate model output into planning and management of hydropower production (Ouranos, 2004).

A major challenge is the need for efficient technology and knowledge transfer. In general, questions about responsibility for funding research, involving stakeholders, and linking communities, government and markets have not been answered (Ouranos, 2004). Another constraint is resistance to new technologies (e.g., genetically modified crops), so that some promising adaptations in the agricultural, water resource management and forestry sectors are unlikely to be realised (Goklany, 2000, 2001).

Financial and market barriers

In the U.S., recent spending on adaptation to extremes has been a sound investment, contributing to reduced fatalities, injuries and significant economic benefits. The Multihazard Mitigation Council (2005) found that US$3.5 billion in spending between 1993 and 2003 on programmes to reduce future damages from flooding, severe wind and earthquakes contributed US$14 billion in societal benefits. The greatest savings were in flood (5-fold) and wind (4-fold) damage reduction. Adaptation also benefited government as each dollar of spending resulted in US$3.65 in savings or increased tax revenue. This is consistent with earlier case studies; the Canadian $65 million invested in 1968 to create the Manitoba Floodway has prevented several billion dollars in flood damage (Duguid, 2002).

Economic issues are frequently the dominant factors influencing adaptive decisions. This includes community response to coastal erosion (Moser, 2000), investments to enhance water resource systems (Report of the Water Strategy Expert Panel, 2005), protective retrofits to residences (Simmons et al., 2002; Kunreuther, 2006), and changes in insurance practices (Kovacs, 2005a). The cost and availability of economic resources clearly influence choices (WHO, 2003), as does the private versus public identity of the beneficiaries (Moser, 2000).

Sometimes, financial barriers interact with the slow turnover of existing infrastructure (Figure 14.3). Extensive property damage in Florida during Hurricane Andrew in 1992 led to significant revisions to the building code. If all properties in southern Florida met this updated code in 1992, then property damage from Hurricane Andrew would have been lower by nearly 45% (AIR, 2002). Florida will, however, still experience extensive damage from hurricanes through damage to the large number of older homes and businesses. Other financial barriers come from the challenge property owners face in recovering the costs of protecting themselves. Hidden adaptations tend to be undervalued, relative to obvious ones. For example, homes with storm shutters sell for more than homes without this visible adaptation, while less visible retrofits, such as tie-down straps to hold the roof in high winds, add less to the resale value of the home, relative to their cost (Simmons et al., 2002).

2000 2020 2040 2060 2080 2100

Figure 14.3. Typical infrastructure lifetimes in North America (data from Lewis, 1987; Bettigole, 1990; EIA, 1999, 2001; Statistics Canada, 2001a; BEA, 2003), in relation to projected North American warming for 2000 to 2100 (relative to 1901-1950) for the A1B scenario, from the IPCC AR4 Multi-Model Dataset (yellow envelope). Measured and modelled anomalies for2000 are shown with black and orange bars, respectively. Projected warming for 2091 to 2100 for the B1, A1B and A2 scenarios are indicated by the blue, yellow and red bars, respectively at the right (data from Christensen et al., 2007: Box 11.1 Figure 1).

2000 2020 2040 2060 2080 2100

Figure 14.3. Typical infrastructure lifetimes in North America (data from Lewis, 1987; Bettigole, 1990; EIA, 1999, 2001; Statistics Canada, 2001a; BEA, 2003), in relation to projected North American warming for 2000 to 2100 (relative to 1901-1950) for the A1B scenario, from the IPCC AR4 Multi-Model Dataset (yellow envelope). Measured and modelled anomalies for2000 are shown with black and orange bars, respectively. Projected warming for 2091 to 2100 for the B1, A1B and A2 scenarios are indicated by the blue, yellow and red bars, respectively at the right (data from Christensen et al., 2007: Box 11.1 Figure 1).

0 0

Post a comment