Relationship Nir R

agro-ecosystem, 295, 297, 298 air temperature, 185, 296, 299, 300, 312, 314, 315, 317, 318, 342, 361-364, 366-369, 377, 378, 397, 421, 422, 424, 425, 431-433, 435, 438, 447, 448, 450, 459 alkalinity, 6, 11, 158 amino acids, 40, 135-137, 140, 143-146, 150

aoelian dust, 27, 53, Arabian Sea, 32, 42, 148, 157-160, 162-164, 167, 168, 270, 278 AVHRR, 32, 99, 299, 354, 361-363, 370, 372, 377, 378, 383, 386

168-170, 200, 202 behavior, 299, 352, 418, 437, 438 bidirectional reflectance distribution function (BRDF), 302 biodiversity, 47

biogenic opal, 107, 109-114, 116-118,

162, 164, 166, 168, 170 biogeochemical cycle, 43,127 biogeography, 29, 45 biological pump, 29, 43, 66, 90, 107, 109, 157-159, 166, 169, 170 biomass, 35, 36, 39, 42, 47, 77, 80, 82, 83, 109, 142, 147, 165, 167, 257-259, 261, 262, 264, 274, 296-299, 304, 306, 336, 338, 340, 344, 355, 366, 377, 378, 395, 396, 419, 446 biomass burning, 274, 366, 377, 378, 396 biominelarization, 240

calcification, 213, 220, 247 canopy architecture, 418, 422 canopy photosynthesis, 420, 429, 435, 436

carbon, 2, 3, 6, 16, 19, 21, 27-30, 43, 45, 47, 49, 50, 53, 65-67, 74, 75, 78, 79, 84, 89-94, 98, 99, 105, 108-110, 122, 126, 131, 135, 137, 140, 145, 146, 148, 150, 151, 157, 158, 160, 162-166, 170, 245, 256, 260, 270, 273, 274, 287, 295-297, 305, 306, 311, 312, 335, 336, 338, 340, 342, 344, 345, 347, 354, 355, 362, 373-375, 378, 383, 384, 395-398, 400, 401, 403-405, 411-413, 417-420, 422, 424, 425, 427, 429, 433, 435-438, 446, 447, 449, 450, 454, 458-460 carbonate, 15, 21, 29, 45, 47, 74, 86, 107, 109-114, 116-123, 125, 130, 137, 158, 162, 164-166, 168, 170, 220, 242, 244, 246, 247 carbon cycle, 2, 3, 16, 19, 21, 27-30, 43, 53, 65, 67, 108, 109, 131, 137, 270, 296, 297, 335, 336, 338, 340, 342, 344, 347, 354, 355, 378, 383, 384, 438, 446, 460 carbon dioxide, 45, 89, 108, 126, 151, 256, 260, 336, 362, 383, 384, 395, 396, 413 Cedar plantation, 396, 397, 399, 401,

403, 405, 407, 409, 411 chlorophyll, 1, 3, 15, 31-37, 39, 41-43, 50, 66-70, 72-74, 76-81, 83,84, 89-92, 95-97, 99-105, 109, 123,

124, 256-262, 266-270, 300, 301, 303, 306, 386, 422, 426, 427 climate, 5, 15, 27-30, 35, 37-41, 43, 44, 46-50, 52, 53, 90, 108, 157, 176, 182, 183, 186, 202, 212-214,

226, 227, 234, 239, 240, 245, 256, 269, 270, 274, 288, 303, 337, 340, 342, 344, 355, 362, 411, 427-429, 439, 458

climatic change, 108, 212, 344, 354

CO2 diffusion, 341

CO2 efflux, 315, 395-399, 404-409,

411-413, 419 CO2 fertilization effect, 344 CO2 flux, 1-5, 7, 9, 11, 13, 15-21, 23, 295-299, 301, 305, 307, 309, 311-317, 319-325, 418, 419, 446, 447, 449, 451, 458 coccolith, 130, 275 coccolithophore(s), 39, 111, 129, 275-277

cool-temperate deciduous broadleaved forest, 417, 418, 420, 426, 438 coral records, 212, 214, 218, 221, 224,

228, 231, 233, 242 coral reefs, 47, 213, 225 coral skeletons, 214, 229, 239-241, 246-248

coral reefs corals coupled physical and biological method crop water stress index (CWSI), 299 crop water stress index (CWSI), 299

227, 229, 231, 233, 239, 241, 242, 244, 246, 247, 277, 280, 282, 283, 286, 287

database, 41, 92, 165, 170, 458 data set, 15, 16, 21, 39, 67, 129, 137, 185, 196, 201, 246, 275, 297, 310-312, 317, 320, 364,451 deglaciation, 290

diffused attenuation coefficient, 89, 94,

95, 97, 100-102, 105 DMS, 27, 30, 37-41, 43, 44, 53 dynamic simulation, 296, 301, 306, 318

East China Sea, 66-68, 73, 75, 77, 78, 80, 81, 83, 91, 99-101, 105, 217, 386

Eddy covariance method, 296, 311-313,

El Nino-outhern Oscillation (ENSO), 2,6,8,32,135, 136,157,176,239 ENSO, 2, 3, 6, 8, 16, 19, 32, 36, 38, 135-139, 148, 150, 151, 157,

169, 170, 176, 178, 179, 181-183, 188, 192, 195, 198, 199, 201, 202,211-214, 217, 225, 227, 229, 231, 233, 239, 273-275, 277, 279, 281, 283, 285, 287-290

285, 287-289 equatorial Pacific, 1-6, 8, 15-22, 32, 33, 35, 36, 42, 91, 95, 99, 105, 123, 136, 137, 139, 147-151, 183, 195, 212, 214, 217, 256, 257, 259, 268-270, 277, 280, 282, 289, 386, 392 Equatorial Pacific Ocean, 32, 36, 136,

150, 151, 386, 392 export flux, 123, 137

256, 259 fluorescence, 8, 140, 300 flux, 1-5, 7, 9, 11, 13, 15-21, 23, 28, 29, 31, 32, 34, 38, 41, 68, 90, 107, 109, 111-114, 116-123, 125-130, 135-139, 142-144, 147-152, 158, 160, 163, 165, 166, 168,

170, 185, 257, 270, 275, 295-301, 303, 305, 307, 309, 311-317, 319-321, 323, 324, 341, 356, 384, 385, 396, 418, 419, 422, 446, 447, 449-452, 458, 460

foraminifera, 111, 130, 277

forest, 336, 342-345, 355, 361, 368, 375, 383, 384, 396-398, 411, 417-421, 425, 426, 428, 429, 437, 438, 445, 447, 449, 451, 454-460

fraction of absorbed photosynthetically active radiation (fAPAR), 296-298, 306-311, 337, 363, 366, 385

global change, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 335, 336, 377, 378 global Mapping, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 378, 383-385, 387, 389, 391 global NPP, 362-364, 368, 369, 373,

374, 377, 378, 383, 386, 387, 392 global ocean carbon cycle, 109 grassland, 308, 343

383, 446 gross primary production (GPP),

hexosamines, 135, 137 hyperspectral signature, 300

ice volume, 273, 274, 280 in situ, 4, 32, 42, 65-69, 71, 73, 75-77, 79, 81, 83-85, 89, 91, 95, 99, 100, 103-105, 221, 222, 224, 225, 450, 455-457, 460 Indian Ocean, 32, 33, 42, 157-161, 163, 165-167, 169, 175-184, 192, 195, 196, 198-203, 214, 215, 231, 274-280, 282, 288 Indonesian throughflow, 175-179, 181, 183, 185, 187, 189, 191, 195, 197, 199, 201 Indo-Pacific Ocean, 273, 286 infrared thermometer, 308, 313, 317 input, 42, 123, 127, 166, 297, 302-305, 321, 322, 340, 385, 450, 458

interannual change, 345, 374 interannual variability, 16, 175, 190, 195, 201, 283, 289, 344, 354

JGOFS, 65, 67, 68, 158, 159, 164, 165, 167, 168, 170, 270

Kelvin waves, 175, 180, 182, 192 Kuroshio, 66-68, 73, 75-84, 95, 100,

101, 108, 109, 129, 130, 214, 217 Kuroshio waters, 66-68, 76-83

La Nina, 36 lagoon, 219

land cover change, 377 land use, 342, 354, 355 late Pleistocene, 273 leaf area index (LAI), 296-299, 302-308, 311, 314-316, 320-324, 338, 339, 341, 344, 363, 418-421, 425, 426, 428, 429, 438

light use efficiency (LUE), 335-338, 340-350, 352-354, 361-364, 366-369, 372-378, 385, 386, 430-436

long-term trend, 1-4, 6, 8, 10-12, 14,15, 213, 214, 231, 377

mechanistic model, 256, 259, 264, 268,

269, 297 metabolism, 44, 268, 454 microbial biomass, 142, 395-398, 400,

407, 409, 411, 412 microwave signatures, 299 Model analysis, 336, 418 monsoon, 157, 159, 160, 162-164, 166-170, 178, 180-184, 234, 239, 274, 275, 278-280, 289, 299 monsoonal impacts, 157 monthly change, 386, 391

net community production, 137

net ecosystem production, 305, 340, 384

net primary production, 295, 296, 335, 338, 345, 361, 362, 383-385, 387, 389, 391 nitrate, 1, 8, 46, 123, 127, 130, 455 nitrogen, 35, 43, 45, 46, 140, 145, 146, 148, 150, 157, 162, 164-166, 170, 300, 301, 312, 395, 403-405, 411, 412, 428, 449 normalized difference vegetation index (NDVI), 296, 298, 307, 309, 310, 320-322, 324, 325, 337, 354, 361-373, 376-378 NPP, 295-297, 305-307, 311, 335-338, 340, 342-345, 347, 348, 350-354, 361-369, 371, 373-378, 383-387, 391, 392, 396, 412, 413 Nutrient dynamics, 395-397, 401 nutrient(s), 1, 2, 11, 29, 30, 42, 45-47, 50, 83, 84, 107, 123, 126, 127, 130, 136, 137, 158, 160, 164, 167, 170, 268, 275, 282, 385, 395-401, 404, 410-412

ocean color, 32, 37, 66, 84, 89-91, 95 ocean general circulation model, 185,

201, 255, 259 optimum air temperature, 366 organic carbon, 6, 28, 29, 74, 75, 110, 135, 140, 146, 150, 157, 158, 160, 162-166, 170, 336, 344, 412, 446, 458 oxygen isotope(s), 211, 212, 219-220,

240, 245, 277 Oyashio-transition waters, 66-68, 76-84

Pacific, 1-8, 11-22, 27, 28, 30, 32, 38, 42, 45, 46, 48-50, 52, 53, 66, 67, 75, 89-91, 95, 99, 101, 105, 107-109, 111, 113, 115, 117, 119, 121-123, 125-127, 129-131, 135-139, 143, 144, 146-152, 175-178, 181-184, 195-199, 201, 203, 211-224, 226, 228, 230-233, 256, 257, 259,

268-270, 273, 274, 277, 278, 280,282,283,286-289,386,392 palaeothermometer, 240 partial pressure of carbon dioxide, 1, 2, 108

particle flux, 107, 108, 111, 122, 123, 135-137, 139, 143, 147-149, 151, 152

particulate inorganic carbon (PIC), 157-159, 165, 166, 168-170 particulate organic carbon (POC), 28, 74, 135, 157-159, 163, 165, 166, 168-170

427-429 phosphate, 123, 124, 126, 130 phytoplankton, 273-275, 278-290, 282, 384

photosynthesis, 29, 45, 66, 90, 158, 259, 262, 268, 299, 300, 303, 305, 306, 311, 314, 320, 322, 323, 325, 337, 339, 340, 350, 366, 367, 384, 418-420, 422-425, 428, 429, 433, 435-438 photosynthetically available radiation (PAR), 36, 66, 67, 81, 89, 91, 93, 94, 96, 256 photosynthetically active radiation, 296, 298, 300, 306, 335, 336, 338, 345, 355, 363, 419 photosynthetic photon flux density

(PPFD), 309 physiological stress, 299 precession, 273-275, 278-280, 282 primary production, 28, 39, 65-67, 79, 108, 109, 122, 136, 273, 279, 282, 295, 335, 361, 418 primary productivity, 48, 49, 65, 66, 83, 84, 89, 91-93, 97, 108, 135, 136, 147, 151, 160, 273, 396

radiation use efficiency (RUE), 239,

306-307, 311 radiative transfer model, 34, 302-304 radiometer, 74, 95, 308, 313, 361, 362

300-303, 305-308, 311, 313, 314, 321, 323, 325, 338, 364, 365, 369-371 reflectance factor, 313, 364, 365, 369, 370

reflectance spectra, 297, 298, 300, 308 regional distribution, 369, 374 regional variation, 143, 146, 369,

376, 377 Resistance, 304, 314, 320 relative humidity, 314, 423, 424 relative water content (RWC), 300 remote sensing, 89, 90, 95, 97, 101, 295-297, 301-308, 310, 312, 313, 315, 320-325, 335, 336, 418, 419, 437 Rossby wave, 175, 178, 192, 195, 197-199, 201

salinity, 1, 3, 6, 11, 15, 29, 41, 47, 74, 159, 169, 176, 184, 202, 203, 211-213, 215, 221, 227, 228, 231, 239, 241, 263 sea level, 98, 175, 182, 184, 195-197,

199-201, 216, 218, 308, 312 sea-surface temperature, 104 SeaWiFS, 33, 35-37, 43, 66-68, 84, 90, 95, 97, 99, 101, 105, 122, 257, 258, 260, 383, 386 sediment trap, 109, 110, 123, 129, 135, 137-140, 146, 157-160, 162, 165, 166, 168, 169 sediment trap experiment, 139,

157-159, 168, 169 settling particles, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125-127, 129, 130, 135-138, 159 slash-and-burn agriculture, 395-397,

399, 401, 403, 405, 407, 409-413 soil, 128, 296-299, 301-304, 306, 308, 311-325, 339-342, 344, 345, 348, 354, 355, 361-364, 366, 367, 377, 384, 395-413, 419, 445-447, 449-460 soil carbon, 311, 446, 459

soil CO2 flux, 297,446

soil CH4 flux, 446, 447

soil CO2 efflux, 315, 395-399, 404-409,

411, 412, 419 soil heat flux, 314

soil moisture, 299, 302, 315, 317, 318, 320-322, 339, 364, 399, 445, 450, 457, 458 Soil temperature, 296, 314, 315, 317, 318, 339, 399, 400, 404-410, 445-447, 449-460 soil water content, 296, 315, 340, 362,

363, 399, 445, 451, 457 solar radiation, 32, 257, 259, 262, 269,

309, 344, 361 synthetic aperture radar (SAR), 299

temporal variation, 38, 90, 128, 137,

213, 233, 344, 446, 454 terrestrial ecosystems, 295, 296, 305,

336, 344, 354, 362, 378, 446, 447 the western Pacific, 1-4, 11-15, 19, 34, 89, 135-138, 176, 196, 214, 215, 223, 231, 233, 273, 277, 283, 288, 289 thermohaline circulation, 176 transpiration, 299, 300, 303, 304, 323, 420, 423

transport, 16, 29, 30, 45, 46, 66, 108, 111, 123, 129, 145, 175, 177, 179-184, 201-203, 273, 277, 288, 300, 422, 446, 456-458 tropical Pacific, 28, 32, 36, 178, 213, 221, 231

upwelling, 3, 4, 6, 11, 15, 19, 32, 35, 36, 44, 46, 48-51, 84, 136-138, 142, 145, 149-151, 157, 160, 164-166, 170, 176, 184, 189, 257, 283, 288, 386, 392

302, 307, 325, 374, 392 vegetation map, 372 Vegetation productivity, 336, 338, 344

warm pool, 1-4, 7, 11-15, 21, 32, 34, Western Pacific Warm Pool, 1-4, 7,

135, 136, 142, 145, 149-151, 11-15, 21, 34, 135, 136, 212,

212, 214, 215, 257, 273, 280, 214, 215, 273, 283 283, 286, 289

Colour Plate Section

This page intentionally left blank

480 i i i i | i i i i | i i J i | i i i i | i i i i | i i i i | i i i i

480 i i i i | i i i i | i i J i | i i i i | i i i i | i i i i | i i i i

340 r i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i

10 I I I I I I I I I I | I I I 1 | I I E 1 | I I I I | I I I I | 1 I I I

340 r i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i

10 I I I I I I I I I I | I I I 1 | I I E 1 | I I I I | I I I I | 1 I I I

25 —i_I_I_I_1_i_J_I_I_I_I_I_I_J_I_I_I_t_J_I_I_I_I_J_I_I_I_I_1 T i_i_i_lJ

140°E 150 160 170 180 170 160 150°W Longitude

25 —i_I_I_I_1_i_J_I_I_I_I_I_I_J_I_I_I_t_J_I_I_I_I_J_I_I_I_I_1 T i_i_i_lJ

140°E 150 160 170 180 170 160 150°W Longitude

Plate 1.2: Longitudinal distributions ofpCO2w, pCOaf, [NO2 ]+[NO3 ], SSS and SST along the equator in October/December 1999 (red), January/March 2001 (blue), January/March 2002 (green) and November 2002/March 2003 (yellow). In the upper panel, the thick line shows pCO2w and the thin line pCO|ir. Arrows show the boundary between the HNLC region and western Pacific warm pool.

Jan.-Feb. 1998

"S

Jan.-Feb. 1998

Jan.-Feb. 1999

Nov.-Dec. 1999

160 Longitude

Jan.-Feb. 1999

Nov.-Dec. 1999

Jan.-Feb. 2001

Jan.-Feb. 2001

Nov. 2001-Feb. 2002

Nov. 2001-Feb. 2002

Oct. 2002-Jan. 2003

Oct. 2002-Jan. 2003

170 160

Longitude

170 160

Longitude

Plate 1.10: The distribution of CO2 flux in the equatorial Pacific in January/February 1998, January/February 1999, November/December 1999, January/February 2001, November 2001/February 2002, and October 2002/ January 2003.

Contour from 4 to 12 by 2
NASA EOS-IDS Modeling project John R. Moisan NASA/GSFC NTF

Plate 2.2: (a) January mean of Oberhuber atlas surface wind field. Note the low wind speeds near the equatorial Pacific and Indian Ocean regions. (b) SeaWiFS annual mean 2 x 2 degree binned climatology. Note the high chlorophyll values in the eastern equatorial Pacific.

En at maximum monthly mixed layer depth

En at maximum monthly mixed layer depth

Longitude

Plate 2.3: Modeled climatological values of the net solar flux at the base of the deepest monthly mixed layer (W m-1 m-1). Values correspond to solar fluxes entering the permanent pycnocline. Largest values exist where the deepest monthly mixed layer and chlorophyll concentration are low and solar flux is high. From Ohlmann et al. (1996).

NASA EOS-IDS Modelling Project John r. Moisan nasa/gsfc tiff

Plate 2.4: The 2 x 2 degree annual mean SeaWiFS-derived diffuse attenuation coefficient [m-1] field for PAR.

DMS Yield Climatologies

Plate 2.5: DMS percent yield climatologies estimated using observed MLD climatologies from the NODC XBT data set and the Simo and Pedros-Allo (1999) DMS yield relationship.

Dust And Carbon Cycle

Plate 2.7: Contemporary annual mean dust deposition rate (Ginoux et al., 2001).

Plate 2.10: Time series of TCO2 (unit: mmol kg 1) in central north Pacific (35°-45° N, 170°-150° W). Top panel shows the time series of surface TCO2 concentration. The lower panel shows the vertical profile of modeled TCO2 concentration from the surface to 250 m. The contour interval is 25 mmol kg-1.

Japan and Okhotsk Seas ()yashio-transition waters Kurosliio waters Tosa Bay

Continental shelf ECS

Japan and Okhotsk Seas ()yashio-transition waters Kurosliio waters Tosa Bay

Continental shelf ECS

m

-60

•SO

-M

-30

-20

-10 "E

Ol

so £

-4.0 '

■30 C

o

201

■1.0 a,

u

c

-OS O

-O!4 o

■0,3 ®

■n j

Q.

„ O

■01 u.

o

£

-0.05 U

-0.04

0.03

Ui

-•.01

Plate 3.1: Measuring sites for primary production using a 13C spiked incubation for 24 hours in Japan and Okhotsk Seas, Oyashio-transition waters, Kuroshio waters, Tosa Bay, and continental shelf waters in the East China Sea overlaid on an annual mean of chlorophyll a in 2002 derived from SeaWiFS (http://www.seawifs.gsfc.nasa.gov/cgi/level3.pl/).

Oyashio-transition

Kuroshio

Tosa Bay

Continental shelf ECS

Oyashio-transition

Kuroshio

Tosa Bay

123456789 10 11 12 123456789 10

9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2

Continental shelf ECS

123456789 10 11 12 123456789 10 11 12 123456789 10 11 12 123456789 10 11 12

Month Month Month Month

Plate 3.4: Seasonal change in vertical profile of (A) chlorophyll a concentration in ug/l, (B) biomass normalized primary production in mgC/mgChl/day, and (C) primary production in logio (mgC/m /day) in the euphotic zone of light depth (% in logi0 ) of Oyashio-transition waters, Kuroshio waters, Tosa Bay, and continental shelf waters of the East China Sea.

Plate 3.8: Maps of annual primary production (gC/m2/year) from 1998 to 2002 produced according to Asanuma (2006).

20,0 33,6 34.2 34.8 35.4 36.0 36.6 37.2 50,0 Annual Mean Salinity (0-50m)

Plate 7.1: Map of the northern Indian Ocean showing the mean annual salinity averaged for the upper 50 m of the water column (Data: World Ocean Atlas, 1998, http://www.cdc.noaa.gov/cdc/data.woa98.html). Black circles show the long-term sediment trap site in the western Arabian Sea (WAST). White circles and black squares indicate the other joint Indo/ German and the US JGOFS sediment trap sites, respectively. US JGOFS water sampling sites are shown by the red circles.

1.12

Si 4

300 600 900

Distance [km]

1200

300 600 900

Distance [km]

1200

Plate 7.4: (a) Concentrations of silicate averaged for the upper 20 m of the water column along the transect from the Arabian coast towards the central and southern Arabian Sea, 1,300 km offshore during the SW monsoon of 1995 (compare Fig. 1). Nutrient data have been obtained from the US JGOFS datacentre. The blue line shows the contribution of diatoms to the biomass of photoautotrophic plankton during the same time (Garrison et al., 2000). (b) Diatom biomass (blue line) and silicate concentration derived from a box model that is described in the text. (c) Diatom growth rates (red line) and zooplankton grazing rates (blue line) vs. silicate concentration (data are derived from the model).

Si 4

POC/PIC

-2000

-3000

-4000

Plate 7.5: Annual mean POC/PIC ratios vs. water depth. Black circles show results obtained from the US JGOFS sediment trap experiment performed in 1994/1995 (Honjo et al., 1999; Lee et al., 2000), grey circles reveal data derived from the Indo/German sediment trap program in the Arabian Sea (Fig. 1) and those obtained from the Bay of Bengal (Unger et al., 2003) are given in red. Vertical lines representing the mean (solid line) and the range (broken line) of POC/PIC ratios obtained from other sediment trap studies in the carbonate-dominated ocean (Klaas and Archer, 2002).

110'E 120"E 130'E

Plate 8.1: Schematic of Indonesian throughflow pathways (Gordon, 2001; reprinted with permission from Elsevier). The solid arrows represent north Pacific thermocline water; the dashed arrows are south Pacific lower therm-ocline water. Transports in Sv (106m3/s) are given in red. The 10.5 Sv in italics is the sum of the flows through the Lesser Sunda passages. ME is the Mindanao Eddy; HE is the Halmahera Eddy. Superscript refers to reference source: 1, Makassar Strait transport in 1997 (Gordon et al., 1999); 2, Lombok Strait (Murray and Arief, 1988; Murray et al., 1990) from January 1985 to January 1986; 3, Timor Passage (between Timor and Australia) measured from March 1992 to April 1993 (Molcard et al., 1996); 4, Timor Passage, between October 1987 and March 1988 (Cresswell et al., 1993); 5, Ombai Strait (north of Timor, between Timor and Alor Island) from December 1995 to December 1996 (Molcard et al., 2001); 6, between Java and Australia from 1983 to 1989 XBT data (Meyers et al., 1995; Meyers, 1996); 7, Upper 470 m of the South Equatorial Current in the eastern Indian Ocean in October 1987 (Quadfasel et al., 1996); 8, Average ITF within the South Equatorial Current defined by five WOCE WHP sections (Gordon et al., 1997). The hollow arrow represents overflow of dense Pacific water across the Lifamatola Passage into the deep Banda Sea, which may amount to about 1 Sv (van Aken et al., 1988). Inserts A-D show the positions of the INSTANT moorings. Insert A: position of the two Makassar Strait inflow moorings (US, red diamond) within Labani Channel. Insert C: position of the Netherland's mooring within the main channel of Lifamatola Passage (yellow triangle). Insert B, D: position of the Sunda moorings in Ombai Strait, Lombok strait, and Timor Passage (US, red diamonds; French, purple square; Australian, green circles). The positions of the shallow pressure gauge array (SPGA) (US, green X). The 100, 500, and 1,000 m isobaths are shown in the inserts.

Nares Strait Ocean Moorings Flow Volume

Plate 8.2: (a) Time series (above) of the average temperature (red) between 150 and 400 db at the MAK-1 mooring (Ffield et al., 2000). The SOI (green) and the Makassar Strait volume transport (blue dashed) are also shown. The data are smoothed by 30-day running averages. (b) Temperature time section constructed from 15 years of Makassar Strait and Flores Sea XBT profiles (Ffield, 2000, personal communication). In the upper panel, the depth of the 22°C XBT isotherm (red) is shown with the SOI (black) highlighting the clear ENSO variability in the XBT temperature data. The data are smoothed by a 1-year running average.

Makassar Strait and Flores Sea XBTs 86 87 88 89 90 91 92 93 94 95 96 97 98 99

O 120 i

Makassar Strait and Flores Sea XBTs 86 87 88 89 90 91 92 93 94 95 96 97 98 99

O 120 i

cp ffi O

86 87 88 89 90 91 92 93 94 95 96 97 98 99 Year

O CO

Plate 8.2: Continued.

Plate 8.4: Potential temperature as a function of time and depth along IX1 off the coast of western Australia near 25°S for (a) observations and (b) model.

1984 1986 1988 1990 1992 1994 1996 1998 2000 Year
1984 1986 1988 1990 1992 1994 1996 1998 2000 Year

Plate 8.5: Potential temperature as a function of time and depth along IX1 off the coast of Java at the Sunda Strait for (a) observations and (b) model.

1984 1986 1988 1990 1992 1994 1996 1998 2000

Year

ep400 O

500 600 700

1984 1986 1988 1990 1992 1994 1996 1998 2000

Year

100 200 j= 300

ep400 O

500 600 700

1984 1986 1988 1990 1992 1994 1996 1998 2000

Year ep400 O

500 600 700

1984 1986 1988 1990 1992 1994 1996 1998 2000

Year

Plate 8.6: Potential temperature as a function of time and depth along PX2 off the Java shelf break near 116°E for (a) observations and (b) model.

Plate 8.7: Potential temperature as a function of time and depth along PX2 at the Arafura shelf break near 133°E for (a) observations and (b) model.

120 140 Longitude

160 180

120 140 Longitude

160 180

120 140 Longitude

160 180

120 140 Longitude

160 180

Plate 8.10a, b: Coefficient in centimeter (top) and lag in months (bottom) of low-frequency anomalies of SSH for Pacific wind index: (a, b) observations and (c, d) model.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Plate 8.11a, b: As for Fig. 10, but for the Indian wind index.

60 80 100 120 140 160 180 Longitude

Plate 10.7: The distribution of Mg in different parts of the Pavona clavus skeleton from Meibom et al. (2004). Dark blue colors correspond to relatively low Mg concentrations; green, yellow and red colors correspond to increasingly high Mg concentrations. EMZ have the highest concentration of Mg. Arrow indicates direction of growth. Scale bars are 10 mm.

30S 120E

SeaWiFS Chlorophyll - a Concentration: Mean 1997 - 2004

SeaWiFS Chlorophyll - a Concentration: Mean 1997 - 2004

140E

160E

160W

140W

120W

100W 80W

140E

160E

160W

140W

120W

100W 80W

oooooooooooooooooos^>d-re><s> ■o'o 'o^o.s s s y> y> v v > > 'it '<5> 'cP

oooooooooooooooooos^>d-re><s> ■o'o 'o^o.s s s y> y> v v > > 'it '<5> 'cP

0 6

Plate 11.1: Biomass distribution from SeaWiFS satellite observations and the mathematical distribution function (mg m-3) given by equation (1). The coordinates x and y are normalized by 100 km.

Plate 11.2: Zonal component of chlorophyll biomass induced southward geostrophic currents (m s-1). The horizontal coordinate origin is located at dateline on the equator and the lengths are scaled by 1°. y coordinate spans 0.5-1.5° N.

Plate. 11.3: Meridional component of chlorophyll biomass-induced southward geostrophic currents (m s-1). The horizontal coordinate origin is located at dateline on the equator and the lengths are scaled by 1°. y coordinate spans 0.3-1.4° N.

ANOMALOUS FLOW AT 2 - 150 m fern s"1!

ANOMALOUS FLOW AT 2 - 150 m fern s"1!

Plate 11.4: Analytical solutions for biologically generated horizontal current (m s-1) at the depth 100 m (longitude (183-190 E) and latitude (0.5-1 N)).

Plate 13.1: Typical reflectance spectra for agro-ecosystem surfaces (a), and for paddy fields with different biomass (b). Abbreviations B, G, R, and NIR mean blue, green, red, and near-infrared wavelengths, respectively. Biomass of rice paddies decreased in order from A to F.

NDVI

Plate 13.3: Relationship between fAPAR of various plant canopies and vegetation index NDVI derived from airborne remote sensing images.

DAS=13

DAS=14 DAS=15

DAS=16

LAI=0.09

LAI=0.11 TLAI=0.13

LAI=0.15

1

1 ^-i v.

Early growth stage

DAP=9 bare soil ~

DAP=9 bare soil ~

DAP=10 bare soil

Bare soil condition after ploughing

bare soil bare soil

DAP=10 bare soil

Day of year in1997

Plate 13.5: Typical time course changes of ecosystem surface CO2 flux (ESFCO2 ) over soybean canopy and bare field estimated by eddy covariance method (a). Soil surface CO2 flux (SSFCO2) under bare soil conditions is indicated in the time of day axis (b). DAS, DAP, and LAI are days after seeding, days after ploughing, and leaf area index, respectively (Inoue et al., 2004).

200 210 220 230 2402 50 260 Day of year

Iterative optimization of the initial soil water content (SWCi) using NDVI.

200 210 220 230 240 250 260 270 Day of year

— ESFCO2 by eddy covariance

Late growth stage

sim-Soil CO2 flux J

I measured-Ecosystem

4 235 \tVJl

^J 236 $

23

[sim-Ecosystem CO2 fluXj

fsim-Vegetation CO2 flux}

— ESFCO2 by eddy covariance

Late growth stage

Day of year

60

50

i>

40

31

13

20

H

10

-

0 measured surface temperature (C)

-

sim

ulat

id surfac

e temperatu

e (C

)

A

&

i

r

A *

A

*

A

A

A

b

A

A

M

A

Hi

A

A j

A A

e

tf '

i

--

t\f\

AA.

A

ft

/

--

4

» 1

p

1

1

i

i i

i i

i

1 1

i i

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

Day of year

Plate 13.11: Dynamic change of ecosystem CO2 (ESFco2) flux estimated by the synergy of remote sensing and process model - a case study for soybean field. NVFCO2: net vegetation CO2 flux; SMFCO2: soil microbial CO2 flux.

Plate 14.3: Estimated global distributions of (a) APAR, (b) GPP, and (c) LUE(gpp), averaged from 1981 to 2000.

Latitude

Plate 14.4: Latitudinal distributions of absorbed PAR (APAR), productivities (GPP and NPP), and light-use efficiencies (LUE(GPP) and LUE(NPP)), averaged from 1981 to 2000.

APAR GPP LUE (GPP)

APAR GPP LUE (GPP)

Plate 14.5: Seasonal change in the estimated global distributions of APAR, GPP, and LUE(GPP), averaged from 1981 to 2000: DJF (December, January, and February), MAM (March, April, and May), JJA (June, July, and August), and SON (September, October, and November), averaged from 1981 to 2000.

-150.0 -120.0 -90.0 -60.0 -30.0 0.0 30.0 60.0 90.0 120.0 150.0

-150.0 -120.0 -90.0 -60.0 -30.0 0.0 30.0 60.0 90.0 120.0 150.0

-150.0 -120.0 -90.0 -60.0 -30.0 0.0 30.0 60.0 90.0 120.0 150.0

-150.0 -120.0 -90.0 -60.0 -30.0 0.0 30.0 60.0 90.0 120.0 150.0

-150.0 -120.0 -90.0 -60.0 -30.0 0.0 30.0 60.0 90.0 120.0 150.0

Time Difference Kids
0 300 600 900 1200 1600 1800 NPP (g Carbon / m2 / year)

Plate 15.5: The results of NPP estimation by the multiple LUE settings. The minimum appeared in 1983 (above), and the maximum appeared in 1998 (below). The greatest NPP appeared in tropical deciduous forest or savannas.

120 150

120 150

slope I

120 150

slope I

120 150

Plate 15.6: Regional changes of NPP. The rate of NPP change in each region was estimated by a linear regression analysis for the results of the multiple LUE-setting for 17 vegetation classes. Clear increases and decreases of NPP were detected in some areas around semiarid zones. Grey areas show extremely low NPP and were omitted in the regression analysis.

Plate 16.1: Global NPP maps in 1998. (a) January, (b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November, (l) December.

0 0

Post a comment