Figure 8.4. Time series of anomalous non-fossil-fuel net land-atmosphere flux from the inversion (solid line, PgC y-1) compared with fire counts compiled by the European Space Agency (dashed line, arbitrary scale), both aggregated over two continental areas (Rödenbeck et al. 2003).







Figure 8.4. Time series of anomalous non-fossil-fuel net land-atmosphere flux from the inversion (solid line, PgC y-1) compared with fire counts compiled by the European Space Agency (dashed line, arbitrary scale), both aggregated over two continental areas (Rödenbeck et al. 2003).

addressed, however, additional carbon fluxes not normally simulated by the ecosystem process models must be included. These include the source-sink patterns of lateral carbon transports by carbon-containing trade products (Tschirley and Servin, Chapter 21, this volume) and through erosion and rivers. In addition, air-sea carbon fluxes in marginal seas and from ocean shelves have to be taken into account (Chen, Chapter 18, this volume). It still remains to be shown that the planned efforts for intense carbon cycle observations in particular regions (e.g., North America [North American Carbon Observation Plan; Wofsy and Harris 2002] or Europe [CarboEurope; Schulze 2003]), together with detailed regional atmospheric modeling, will indeed provide consistent patterns of carbon sources and sinks inferred by the different approaches. Ultimately, the multitude of different data streams on the state of the carbon cycle from the atmosphere, oceans, and terrestrial surface might be merged into a regional or global data assimilation system, similar to the ones employed in current weather forecast models. The development of such a system, however, constitutes a huge challenge for the coming years.

Literature Cited

Andres, R. J., G. Marland, T. Boden, and S. Bischof. 2000. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751 — 1991, and an estimate of their isotopic composition and latitudinal distribution. Pp. 53—62 in The carbon cycle, edited by T. M. L. Wigley and D. S. Schimel. Cambridge: Cambridge University Press. Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Sciences 41:237—276.

-. 1903. Lehrbuch der kosmischen Physik. Leipzig: Hirzel.

Bacastow, R. B., and C. D. Keeling. 1981. Atmospheric carbon dioxide concentration and the observed airborne fraction. Pp. 103 — 112 in Carbon cycle modelling, edited by B. Bolin. SCOPE 16. Chichester, UK: John Wiley and Sons.

Battle, M., M. L. Bender, P P. Tans, J. W. C. White, J. T. Ellis, T. Conway, and R. J. Francey. 2000. Global carbon sinks and their variability inferred from atmospheric O2 and 813C. Science 287 (5462): 2467-2470.

Bolin, B., and C. D. Keeling. 1963. Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. Journal of Geophysical Research 68:3899-3920.

Bousquet, P, P. Peylin, P Ciais, C. Le Quéré, P Friedlingstein, and P P. Tans. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290 (5495): 1342-1346.

Ciais, P., P P. Tans, M. Trolier, J. W. C. White, and R. J. Francey. 1995. A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269 (5227): 1098-1102.

Conway, T. J., and P. P. Tans. 1999. Development of the CO2 latitude gradient in recent decades. Global Biogeochemical Cycles 13 (4): 821-826.

Cooperative Atmospheric Data Integration Project-Carbon Dioxide. 2000. GLOBALVIEW-CO2. Boulder, CO: National Oceanic and Atmospheric Administration CMDL. CD-ROM (also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW).

Denning, A. S., I. Y. Fung, and D. Randall. 1995. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376 (6537): 240-243.

Denning, A. S., M. Holzer, K. R. Gurney, M. Heimann, R. M. Law, P J. Rayner, I. Y. Fung, S. M. Fan, S. Taguchi, P. Friedlingstein, Y. Balkanski, J. Taylor, M. Maiss, and I. Levin. 1999. Three-dimensional transport and concentration of SF6: A model intercomparison study (TransCom 2). Tellus 51B (2): 266-297.

Enting, I. G. 2002. Inverse modeling of atmospheric constituents. Cambridge: Cambridge University Press.

Enting, I. G., and J. V. Mansbridge 1991. Latitudinal distribution of sources and sinks of CO2: Results of an inversion study. Tellus 43B (2): 156-170.

Enting, I. G., C. M. Trudinger, and R. J. Francey. 1995. A synthesis inversion of the concentration and 13C of atmospheric CO2. Tellus 47B:35-52.

Esser, G. 1987. Senstitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus 39B:245-260.

Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and P Tans. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282 (5388): 442-446.

Fan, S. M., T. L. Blaine, and J. L. Sarmiento. 1999. Terrestrial carbon sink in the Northern Hemisphere estimated from the atmospheric CO2 difference between Mauna Loa and the South Pole since 1959. Tellus 51B (5): 863-870.

Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier. 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373 (6512): 326-330.

Fung, I., K. Prentice, E. Matthews, J. Lerner, and G. Russell. 1983. 3-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere. Journal ofGeophysical Research—Oceans and Atmospheres 88 (NC2): 1281 — 1294.

Gloor, M., N. Gruber, J. Sarmiento, C. L. Sabine, R. A. Feely, and C. Rödenbeck. 2003. A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophysical Research Letters 30, doi:10.1029/2002GL015594. Gruber, N. 1998. Anthropogenic CO2 in the Atlantic Ocean, 1998. GlobalBiogeochemi-

cal Cycles 12:165-191. Gurney, K. R., R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y. H. Chen, P Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M. Prather, B. C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, and C. W. Yuen. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415 (6872): 626-630. Heimann, M., and S. Körner. 2003. The global atmospheric tracer model TM3: Model description and user's manual, release 3.8a. Technical Report No. 5. Jena, Germany: Max-Planck-Institute for Biogeochemistry. Heimann, M., C. D. Keeling, and I. Y. Fung. 1986. Simulating the atmospheric carbon dioxide distribution with a three-dimensional tracer model. Pp. 16-49 in The changing carbon cycle: A global analysis, edited by J. Trabalka and D. E. Reichle. New York: Springer Verlag.

House, J. I., I. C. Prentice, N. Ramankutty, R. A. Houghton, and M. Heimann. 2003. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus 55B:345-363.

Houweling, S., F.-M. Breon, I. Aben, C. Rödenbeck, M. Gloor, M., Heimann, and P Ciais. 2003. Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmospheric Chemistry and Physics Discussion 3, 5237-5274. Hyson, P, P. J. Fraser, and G. I. Pearman. 1980. A two-dimensional transport simulationmodel for trace atmospheric constituents. Journal ofGeophysical Research—Oceans and

Atmospheres 85 (NC8): 4443-4455. Janssens, I. A., A. Freibauer, P. Ciais, P. Smith, G. J. Nabuurs, G. Folberth, B.

Schlamadinger, R. W. A. Hutjes, R. Ceulemans, E. D. Schulze, R. Valentini, and A. J. Dolman. 2003. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300 (5625): 1538-1542. Kaminski, T., and M. Heimann. 2001. Inverse modeling of atmospheric carbon dioxide fluxes. Science 294 (5541): 259. Kaminski, T., M. Heimann, and R. Giering. 1999. A coarse grid three-dimensional global inverse model of the atmospheric transport. 2. Inversion of the transport of CO2 in the 1980s. Journal ofGeophysical Research-Atmospheres 104 (D15): 18555-18581. Kaminski, T., P J. Rayner, M. Heimann, and I. G. Enting. 2001. On aggregation errors in atmospheric transport inversions. Journal ofGeophysical Research-Atmospheres 106

Keeling, C. D. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12:200-203.

-. 1973. Carbon cycle. Pp. 251—329 in Chemistry of the lower atmosphere, edited by

S. I. Rasool. New York: Plenum Press.

Keeling, R. F., and S. R. Shertz. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358:723—727.

Keeling, C. D., and T. P Whorf. 2003. Monthly and annual CO2 concentration observed at Manua Loa and the South Pole. Oak Ridge, TN: Carbon Dioxide Information and Analysis Center (CDIAC), Oak Ridge National Laboratory. http://cdiac.esd.ornl.gov/ home.html.

Keeling, C. D., S. C. Piper, and M. Heimann. 1989. A three dimensional model of atmospheric CO2 transport based on observed winds. 4. Mean annual gradients and interannual variations. Pp. 305—363 in Aspects of climate variability in the Pacific and the Western Americas, edited by D. H. Peterson. Washington, DC: American Geophysical Union.

Keeling, R. F., R. P. Najjar, M. L. Bender, and P P. Tans. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles 7:37-67.

Keeling, C. D., T. P Whorf, M. Wahlen, and J. Vanderplicht. 1995. Interannual extremes in the rate of rise of atmospheric carbon-dioxide since 1980. Nature 375 (6533): 666-670.

Keeling, R. F., S. C. Piper, and M. Heimann. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218-221.

Langenfelds, R., R. Francey, B. C. Pak, L. P Steele, J. Lloyd, C. M. Trudinger, and C. A. Allison. 2002. Interannual growth rate variations of atmospheric CO2 and its d13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles 16 (3): 1048.

Law, R. M., P J. Rayner, A. S. Denning, D. Erickson, I. Y. Fung, M. Heimann, S. C. Piper, M. Ramonet, S. Taguchi, J. A. Taylor, C. M. Trudinger, and I. G. Watterson. 1996. Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Global Biogeochemical Cycles 10 (4): 783-796.

Le Queré, C., O. Aumont, L. Bopp, P. Bousquet, P. Ciais, R. Francey, M. Heimann, C. D. Keeling, R. F. Keeling, H. Kheshgi, P. Peylin, S. C. Piper, I. C. Prentice, and P. J. Rayner. 2003. Two decades of ocean CO2 sink and variability. Tellus 55B:649-656.

Levin, I., and B. Kromer. 1997. Twenty years of atmospheric CO2-14C observations at Schauinsland station, Germany. Radiocarbon 39 (2): 205-218.

Maier-Reimer, E., and K. Hasselmann. 1987. Transport and storage of CO2 in the ocean: An inorganic ocean-circulation carbon cycle model. Climate Dynamics 2:63-90.

McGuire, A. D., S. Sitch, J. S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F. Joos, J. Kaplan, D. W. Kicklighter, R. A. Meier, J. M. Melillo, B. Moore, I. C. Prentice, N. Ramankutty, T. Reichenau, A. Schloss, H. Tian, L. J. Williams, and U. Wittenberg. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15 (1): 183-206.

Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. Box diffusionmodel to study carbon-dioxide exchange in nature. Tellus 27 (2): 168-192.

Olivier, J. G. J., and J. J. M. Berdowski. 2001. Global emissions sources and sinks. Pp. 33-78 in The climate system, edited by J. Berdowski, R. Guicherit and B. J. Heij. Lisse, the Netherlands: A. A. Balkema/Swets and Zeitlinger.

Orr, J. C., E. Maier-Reimer, U. Mikolajewicz, P. Monfray, J. L. Sarmiento, J. R.

Toggweiler, N. K. Taylor, J. Palmer, N. Gruber, C. L. Sabine, C. Le Quéré, R. M. Key, and J. Boutin. 2001. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. GlobalBiogeochemical Cycles 15:43—60.

Pacala, S. W., G. C. Hurtt, D. Baker, P. Peylin, R. A. Houghton, R. A. Birdsey, L. Heath, E. T. Sundquist, R. F. Stallard, P. Ciais, P. Moorcroft, J. P. Caspersen, E. Shevliakova, B. Moore, G. Kohlmaier, E. Holland, M. Gloor, M. E. Harmon, S. M. Fan, J. L. Sarmiento, C. L. Goodale, D. Schimel, and C. B. Field. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292 (5525): 2316—2320.

Papale, D., and R. Valentini. 2003. A new assessment of European forest carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology 9:525-535.

Pearman, G. I., and P. Hyson. 1980. Activities of the global biosphere as reflected in atmospheric CO2 records. Journal of Geophysical Research—Oceans and Atmospheres 85

Piper, S. C., C. D. Keeling, and E. F. Stewart. 2001. Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. II. A three-dimensional tracer inversion model to deduce regional fluxes. SIO Reference Series no. 0107. La Jolla, CA: Scripps Institution of Oceanography.

Prentice, I. C., G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Keshgi, C. Le Quéré, R. J. Scholes, and D. W. R. Wallace. 2002. The carbon cycle and atmospheric carbon dioxide. Pp. 183-237 in Climate change 2001: The scientific basis (Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change), edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson. Cambridge: Cambridge University Press.

Rayner, P J., I. G. Enting, R. J. Francey, and R. Langenfelds. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, delta C-13 and O2/N2 observations. Tellus 51B (2): 213-232.

Rivier, L., P Bousquiet, J. Brandt, P. Ciais, C. Geels, M. Gloor, M. Heimann, U. Karstens, P. Peylin, and C. Rödenbeck. 2003. Estimation of the regional sources and sinks of CO2 with a focus on Europe using both regional and global atmospheric models. Journal of Geophysical Research (in preparation).

Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann. 2003. Atmospheric CO2 source history over the last 20 years inferred from atmospheric data and models. Atmospheric Chemistry and Physics 3, 1919-1964. http://www.copernicus.org/EGU/acp/ acp/3/1919/acp-3-1919.pdf.

Sabine, C. L., R. M. Key, K. M. Johnson, F. J. Millero, J. L. Sarmiento, D. W. R. Wallace, and C. D. Winn. 1999. Anthropogenic CO2 inventory of the Indian ocean. Global Biogeochemical Cycles 13:179-198.

Sabine, C. L., R. A. Feely, R. M. Key, J. L. Bullister, F. J. Millero, K. Lee, T.-H. Peng, B. Tilbrook, T. Ono, and C. S. Wong. 2002. Distribution of anthropogenic CO2 in the Pacific Ocean. Global Biogeochemical Cycles 16 (4): 1083, doi:10.1029/2001GB001639.

Sarmiento, J. L., and E. T. Sundquist. 1992. Revised budget for the oceanic uptake of anthropogenic carbon-dioxide. Nature 24 (356): 589-593.

Schulze, E.-D. 2003. Assessment of the European terrestrial carbon balance: Proposal for an integrated project. Jena, Germany: Max-Planck-Institute for Biogeochemistry.

Siegenthaler, U., and H. Oeschger. 1978. Predicting future atmospheric carbon-dioxide levels. Science 199 (4327): 388-395.

Sitch, S., I. C. Prentice, B. Smith, W. Cramer, J. Kaplan, W. Lucht, M. Sykes, K. Thon-icke, and S. Venevsky. 2000. LPJ: A coupled model of vegetation dynamics and the terrestrial carbon cycle. In The role of vegetation dynamics in the control of atmospheric CO content, edited by S. Sitch. Lund, Sweden: Lund University.

Takahashi, T., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R. A. Feely, C. Sabine, J. Olafsson, and Y. Nojiri. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II49:1601-1623.

Tans, P. 1!, T. J. Conway, and T. Nakazawa. 1989. Latitudinal distribution of the sources and sinks of atmospheric carbon-dioxide derived from surface observations and an atmospheric transport model. Journal of Geophysical Research—Atmospheres 94 (D4): 5151-5172.

Tans, P. P, I. Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247 (4949): 1431-1438.

van der Werf, G. R., J. T. Randerson, G. J. Collatz, and L. Giglio. 2003. Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology 9:547-562.

Wofsy, S. C., and R. C. Harriss. 2002. The North American Carbon Program (NACP). Report of the NACP Committee of the U.S. Interagency Carbon Cycle Science Program. Washington, DC: U.S. Global Change Research Program.

Wolter, K., and M. S. Timlin. 1993. Monitoring ENSO in COADS with a seasonally adjusted principal component index. Pp. 52-57 in Proceedings of the 17th climate diagnostics workshop. University of Oklahoma, Norman, OK.

Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwiche, and D. B. Botkin. 1978. Biota and world carbon budget. Science 199 (4325): 141-146.

Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook

Post a comment