References

Alexander, I. (1989). Mycorrhizas in tropical forests. In "Mineral Nutrients in Tropical Forest and Savanna Ecosystems" (J. Proctor, Ed.), pp. 169-188. Blackwell Scientific Publications, Oxford. Almeida, J. P. F., Ltischer, A., Frehner, M„ Oberson, A., and Nösberger, J. (1999). Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO, and P fertilisation. Plant and Soil 210, 159-166. Arnone, J. A., Ill and Körner (1995). Soil and biomass carbon pools in model communities of tropical plants under elevated CO,. Oecologia 104,61-71.

Artaxo, P., Fernandes, E. T., Martins, J. V., Yamasoe, M. A., Hobbs, P. V., Maenhaut, W., Longo, K. M„ and Castanho, A. (1998). Large scale aerosol source apportionment in Amazonia. /. Geophys. Res. 103, 31837-31847.

Artaxo, P., Maenhaut, W„ Storms, H„ and Van Grieken, R. (1990). Aerosol characteristics and sources for the Amazon Basin during the wet season. I. Geophys. Res. 95, 16971-16985.

Artaxo, P., Storms, H., Bruynseels, F., Van Grieken, R„ and Maenhaut, VV. (1988). Composition and sources of aerosols from the Amazon Basin. J. Gcophys. Res. 93, 1605-1615.

Baas, R., van der Werf, A., and Lambers, H. (1989). Root respiration and growth in I'lantago major as affected by vesicular-arbuscular mycor-rhizal infection. Plant Physiol. 91, 227-232.

Bailie, I. C., and Mamit, J. D. (1983). Observations on rooting depth in mixed dipterocarp forest. Malayan Forester 46, 369—374.

Barrett, D. J. and Gifford, R. M. (1999). Increased C-gain by an endemic Australian pasture grass at elevated atmospheric C02 concentration when supplied with non-labile inorganic phosphorus. Aust. J. Plant Physiol. 26,443-451.

Barrett, D. J., Richardson, A. E„ and Gifford, R. M. ( 1998). Elevated atmospheric CO, concentrations increase wheat root phosphatase activity when growth is limited by phosphorus. Aust. J. Plant Physiol. 25, 87-93.

Barrow, N. J. (1983). On the reversibility of phosphate sorption by soils. /. Soil Sci. 34, 751-758.

Barrow, N. J. (1999). The four laws of soil chemistry: the Leeper lecture 1998. Aust. J. Soil Res. 37, 787-829.

Barrow, N. J., and Whelan, B. W. (1989). Testing a mechanistic model. VIII. The effects of time and temperature of incubation on the sorption and subsequent desorption of selenite and selenate by a soil. /. Soil Sci. 40, 29-37.

Bernhard-Reversât, E. (1975). Recherches sur l'écosystème del la foret subequatoriale de base Côte-d'Ivorie. Les cycles des macroelements. La Terre el la Vie 29, 229-254.

Bhatti, L S., Comerford, N. B„ and Johnston, C. T. (1998). Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a spodic horizon. Soil Sci. Soc. Am. }. 62, 1089-1095.

Bolan, N. S. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134, 189-207.

Bonde, T. A., Christensen, B. T., and Cerri, C. C. (1992). Dynamic of soil organic matter as reflected by natural "C abundance in particle size fractions of forested and cultivated oxisols. Soil Biol, and Bioehem. 24, 275-277.

Brinkmann, W. L. F. ( 1985). Studies on hydrobiogeochemistry of a tropical lowland forest system. Geojournal 11, 89-101.

Brookes, P., Powlson, D. S., and Jenkinson, D. S. ( 1984). Phosphorus in the soil microbial biomass. Soil Biol. Bioehem. 16, 169-175.

Bruijnzeel, L. A. (1989). Nutrient cycling in moist tropical forests: the hy-drological framework. In "Mineral Nutrients in Tropical Forest and Savanna Ecosystems." (J. Proctor, Ed.), pp. 383-415. Blackwell Scientific Publications, Oxford.

Bruijnzeel, L. A. (1991). Nutrient input-output budgets of tropical forest ecosystems: a review. /. Tropical Ecol. 7, 1 -24.

Burghouts, T. B. A., Van Straalen, N. M„ and Bruijnzeel, L. A. (1998). Spatial heterogeneity of element and litter turnover in a Bornean rain forest./. Tropical Ecol. 14,477-506.

Burnham, C. P. (1989). Pedological processes and nutrient supply from parent material in tropical soils. In "Mineral Nutrients in Tropical Forest and Savanna Ecosystems" (J. Proctor, Ed.), pp. 27-41. Blackwell Scientific Publications, Oxford.

Carswell, F. E„ Grace, L, Lucas, M. E„ and Jarvis, P. G. (2000). The interaction of nutrient limitation and elevated CO, on carbon assimilation of a tropical tree seedling (Cedrela odorata L.) Tree Physiol. 20, 000-000.

Chabot, B. F. and Hicks, D. J. ( 1992). The ecology of leaf life spans. Annu. Rev Ecol. Systematica 13, 229-259.

Chapin, F. S. III. (1980). The mineral nutrition of wild plants. Annu. Rev. Ecol. Systematics 11, 233-260.

Ciais, P., Tans, P. P., Trolier, M„ White, J. W. C„ and Francey, R. J. ( 1995). A large northern hemisphere CO, sink indicated by the ,,C/I2C ratio of atmospheric CO,. Science 269, 1098-1102.

Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A., Mueller-Dombois, D„ and Vitousek, P. M. ( 1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronose-quence in Hawaii. Ecology 76, 1407-1424.

Cromer, R. N„ Kriedemann, P. E„ Sands, P. J„ and Stewart, L. G. (1993). Leaf growth and photosynthetic response to nitrogen and phosphorus in seedling trees of Gmelina arborea. Aust. J. Plant Physiol. 20, 83-98.

Crozat, G. (1979). Sur l'émission d'un aérosol riche en potassium par lâ foret tropicale. Tellus 31B, 52-57.

Dalton, J. D., Russell, G. C., and Sieling, D. H. (1952). Effect of organic matter on phosphate availability. Soil Sci. 73, 173-177.

DeLucia, E. H., Callaway, R. M., Thomas, E. M., and Schlesinger, W. H. (1997). Mechanisms of phosphorus acquisition for Ponderosa pine seedlings under high CO, and temperature. Ann. Bot. 79, 111-120.

Diaz, S. (1996). Effects of elevated [CO,] at the community level mediated by root symbiosis. Plant and Soil 187, 309-320.

Drake, B. G„ Gonzalez-Meier, M. A., and Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric C02? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609-639.

Drechsel, P., and Zech, W. (1991). Foliar nutrient levels of broad-leaved tropical trees: A tabular review. Plant and Soil 131, 29-46.

Echalar, F„ Artaxo, P., Martins, J. V., Yamasoe, M„ and Gerab, F. (1998). Long-term monitoring of atmospheric aerosols in the Amazon Basin: Source identification and apportionment. /. Geophys. Res. 103, 31849-31864.

Enting, I. G., Trudinger, C. M., and Francey, R. J. (1995). A synthesis inversion on the concentration and SL>C of atmospheric CO,. Tellus 47B, 35-52.

Fôlster, H., De Las Salas, G„ and Khanna, P. (1976). A tropical evergreen forest site with perched water table, Magdalena valley, Columbia. Biomass and bioelement inventory of primary and secondary vegetation. CEcologia Plantarum 11, 297-320.

Forti, C., and Moreira-Nordemann, L. M. (1991). Rainwater and through-fall chemistry in a 'terra-firme' rain forest: Central Amazonia. /. Geophys. Res. 96, 7415-7421.

Fox, R. L., De La Pena, R. S., Gavenda, R. T., Habte, M, Hue, N. V., Ikawa, H„ Jones, R. C., Plucknett, D. L„ Silva, J. A., and Soltanpour, P. (1991). Amelioration, revegetation and subsequent soil formation in denuded bauxite materials. Allertonia 6, 128-184.

Fox, T. R„ Comerford, N. B., and McFee, W. W. (1990). Phosphorus and aluminium release from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 54, 1763-1767.

Friedlingstein, P., Fung, I., Holland, E„ John, J., Brasseur, G„ Erickson, D„ and Schimel, D. (1995). On the contribution of CO, fertilization to the missing biospheric sink. Global Biogeochem. Cycles 9, 541-556.

Gardner, L. R. ( 1990). The role of rock weathering in the phosphorus budget of terrestrial watersheds. Biogeochemistry 11, 97-110.

Gifford, R„ Lutze, J. L„ and Barrett, D. (1996). Global atmospheric change effects on terrestrial carbon sequestration: Exploration with a global C- and N-cycle model (CQUESTN). Plant and Soil 187, 369-387.

Gijsman, A. J„ Oberson, A., Tiessen, H„ and Friesen, D. K. ( 1996). Limited applicability of the CENTURY model to highly weathered tropical soils. Agronomy J. 88, 894-903.

Gollev, E B„ McGinnis, J. X, Clements, R. G„ Child, G. 1., and Deuver, M. J. (1975). "Mineral Cycling in a Tropical Moist Forest System." University of Georgia Press, Athens.

Grace, J., Lloyd, J., Mclntyre, J., Miranda, A. C„ Meir, P., Miranda, H. S., Nobrc, C„ Moncrieff, J. M., Massheder, J., Wright, I. R„ and Gash, J. (1995). Carbon-dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992-1993. Science 270, 778-780.

Grace, J., Malhi, Y., Higuchi, N„ and Meir, P. (2000). Productivity and carbon fluxes of tropical rain forests. In "Global Terrestrial Productivity: Past, Present and Future" (H. A. Mooney, J. Roy, and B. Saugier, Ed.). Springer-Verlag, Heidelberg.

Grace, J., Malhi, Y., Lloyd, J., Mclntyre, J., Miranda, A. C, Meir, P., and Miranda, II. S. (1996). The use of eddy-covariance to infer the net carbondioxide uptake of Brazilian rain forest. Global Change Biol. 2, 209-218.

Graham, M. T., and Duce, R. A. (1979). Atmospheric pathways of the phosphorus cycle. Geochern. Cosniocheni. Acta 43, 1195-1208.

Greenland, D. J., and Kowal, J. M. L. (1960). Nutrient content of the moist tropical forest of Ghana. Plant and Soil 12, 154-174.

Grubb, P. J., and Edwards, P. J. (1982). Studies of mineral cycling in a montane rain forest in New Guinea. III. The distribution of mineral elements in the above-ground material. /. Ecol. 70, 623-648.

Hardy, F. (1935). Some aspects of tropical soils. Trans. 3rd Int. Congr. Soil Sci. (Oxford) 2, 150-163.

Hase, H., and Fólster, H. (1982). Bioelement inventory of a tropical isemi-) evergreen seasonal forest on eutrophic alluvial soils, West Llanos, Venezeula. Acta CF.colog./CF.colog. Plantarían 3, 331 -346.

Herbert, D. A., and Eownes, J. H. (1995). Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Bio-geochei n istry 29,223-235.

Hogan K. P., Smith A. P., and Ziska L. H. (1991). Potential effects of elevated CO, and changes in temperature on tropical plants. Plant Cell Environ. 14, 763-778.

Houghton, R. A. (1996). Land-use change and terrestrial carbon: The temporal record. In "Forest Ecosystems, Forest Management and the Global Carbon Cycle" (M. J. Apps and D. T. Price, Ed.), pp. 117- 134. NATO ASI Series, Springer-Verlag, Berlin, Heidelberg.

Huante, P., Rincón, E., and Chapin, F. S. III. (1995). Responses to phosphorus of contrasting successional tree-seedling species from the tropical deciduous forest of Mexico. Functional Ecol. 9, 760-766.

Hughes, J. C. (1982). High gradient separation of some soil clays from Nigeria, Brazil and Columbia. I. The interrelationships between iron and aluminium extracted by acid ammonium oxalate and carbon. /. Soil Sci. 33, 509-519.

Hughes, R. F., Kauffman, J. B., and Jaramillo, V. (1999). Biomass, carbon and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80, 1892- 1907.

Jakobsen, I., and Rosendahl, L. (1990). Carbon flow into soil and external hy-phae from roots of mycorrhizal cucumber plants. New Phytol. 120,77-83.

Janos, D. P. (1989). Tropical mycorrhizas, nutrient cycles and plant growth. In "Mineral Nutrients in Tropical Forest and Savanna Ecosystems" (J. Proctor, Ed.), pp. 327-345. Blackwell Scientific Publications, Oxford.

Jenkinson, D. S., and Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamstead classical experiments. Soil Sci. 123, 298-305.

Jones, D. L. (1998). Organic acids in the rhizosphcrc—A critical review. Plant and Soil 205, 25-44.

Jones, D. L„ and Darrah, P. R. (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil 166, 247-257.

Jordon, C. F., and Herrera, R. (1981). Tropical rain forests: Are nutrients really critical? Am. Nat. 117, 167- 180.

Jungk, A., Asher, C. J., Edwards, D. G., and Meyer, D. (1990). Influence of phosphate status on phosphate kinetics of maize (Zea mays) and soybean (Glycine max) roots. Plant and Soil 124, 175-182.

Keeling, R. F., Piper, S. C., and Heimann, M. (1996). Global and hemispheric CO, sinks deduced from changes in atmospheric O, concentration. Nature 381, 218 - 221.

Keller, M„ Kaplan, W. A., and Wofsey, S. C. (1986). Emissions of N,0, CH4 and CO, from tropical soils. /. Geophys. Res. 91, 11791 -11802.

Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A., and Hendricks, D. M. (1998). Changing sources of base cations during ecosystem development, Hawaiian islands. Geology 26,1015-1018.

Kerfoot, O. (1963). The root systems of tropical forest trees. Empire Forestry Rev. 42, 19-26.

Kirschbaum, M. U. F., Medlyn, B. E„ King, D. A., Pongracic, S„ Murty, D„ Keith, H., Khanna, P. K., Snowdon, P., and Raison, R. J. (1998). Modelling forest growth responses to increasing C02 concentration in relation to various factors affecting nutrient supply. Global Change Biol. 4,23-41.

Kirschbaum, M. U. F., and Tompkins, D. (1990). Photosynthetic responses to phosphorus nutrition in Eucalyptus grandis seedlings. Aust. }. Plant Physiol. 17, 527-535.

Klinge, H. (1976). Bilanzierung von hauptnährstoffen im Ökosystem tropischer regenwald (Manaus). vorläufige daten. Biogeographica 9,59-77.

Koide, R. T. (1991). Nutrient supply, nutrient demand and plant responses to mycorrhizal infection. New Phytol 117, 365-386.

Körner, C., and Arnone, J. A., Ill (1992). Responses to elevated carbondioxide in artificial tropical ecosystems. Science 257, 1672-1675.

Lesack, L. F. W., and Melack, J. M. (1996). Mass balance of major solutes in a rainforest catchment in the Central Amazon. Implications for nutrient budgets in tropical rainforests. Biogeochemistry 32, 115-142.

Lewis, W. M„ Jr., Hamilton, S. K„ Jones, S. L„ and Runnels, D. D. (1987). Major element chemistry, weathering and element yields for the Caura River drainage, Venezeula. Biogeochemistry 4, 159-181.

Lindberg, S. E„ Lovett, G. M„ Richter, D. D„ and Johnson, D. W. (1986). Atmospheric deposition and canopy interactions of major ions in a forest. Science 231, 141-145.

Lloyd, J. (1999a). The CO, dependence of photosynthesis, plant growth responses to atmospheric C02 and their interactions with soil nutrient status II. Temperate and boreal forest productivity and the combined effects of increasing CO, concentration and increased nitrogen deposition at a global scale. Functional Ecol. 13, 439-459.

Lloyd, J. (1999b). Current perspectives on the terrestrial carbon cycle. Tel-lus 51B, 336-342.

Lloyd, J„ and Farquhar, G. D. (1996). The C02 dependence of photosynthesis, plant growth responses to atmospheric CO, and their interactions with soil nutrient status I. General principles and forest ecosystems. Functional Ecol 10, 4-32.

Lloyd, J., and Farquhar, G. D. (2000). A clarification of some issues raised by Poorter (1988). Global Change Biol. 6, 000-000

Lloyd, ]., Grace, ]., Miranda, A. C„ Mier, P., Wong, S. C„ Miranda, H„ Wright, I., Gash, J. H. C„ and Mclntyre, J. (1995). A simple calibrated model of Amazon rain forest productivity based on leaf biochemical properties. Plant Cell and Environ. 18,1129-1145.

Lodge, D. J., McDowell, W. H„ and McSwiney, C. P. (1994). The importance of nutrient pulses in tropical forests. Trends Ecol. Evol. 9, 384-397.

Lopez-Hernandez, D„ Siegert, G., and Rodriguez,). V. (1986). Competitive adsorption of phosphate with malate and oxalate by tropical soils. Soil Sci. Soc. Am. /. 50, 1460-1462.

Lovelock, C. E., Kyllo, D„ Popp, M., Isopp, H., Virgo, A., and Winter, K. (1997). Symbiotic vcsicular-arbuscular mycorrhizae influence maximum rates of photosynthesis in tropical tree seedlings grown under elevated CO,. Aust. J. Plant Physiol. 24, 185-194.

Lovelock, C. E„ Kyllo, D„ and Winter, K. (1996). Growth responses to vesicular-arbuscular mycorrhizae and elevated C02 in seedlings of a tropical tree, Beilschmieda pciulula. Functional Ecol. 10, 662-667.

Lovelock, C. F., Winter, K„ Mersits, R., and Popp, M. (1998). Responses of communities of tropical tree species to elevated CO, in a forest clearing. Oecologia 116, 207-218.

Magid, )., Tiessen, H., and Condron, L. M. (1995).. Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In "IIu-inic Substances in Terrestrial Ecosystems" (A. Piccolo, Ed.). Elsevier, Amsterdam.

Malhi, Y„ Baldocchi, D. D„ and Jarvis, P. J. (1999). The carbon balance of tropical, temperate and boreal forests. Plant Cell anil Environ. 22, 715-740.

Malhi, Y„ Nobre, A. D„ Grace, J., Kruijt, B„ Pereira, M. G. P., Culf, A., and Scott, S. (1998). Carbon dioxide transfer above a central Amazonian rain forest. /. Geophys. Res. 103, 31593-31612.

Marschner, H. (1995). "Mineral Nutrition of Higher Plants," 2nd ed. Academic Press, London.

Martinelli, L. A., Piccolo, M. C, Townsend, A. R., Vitousek, P. M„ Cuevas, E„ McDowell, W., Robertson, G. P., Santos, O. C., and Treseder, K. (1999). Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogcochernistry 46, 45-65.

Martinez-Y'rizar, A. (1995). Biomass distribution and primary productivity of tropical dry forests. In "Seasonally Dry Tropical Forests" (S. H. Bullock, H. A. Mooney, and E. Medina, Ed.), pp. 326-345. Cambridge University Press, Cambridge.

Matson, P. A. and Vitousek, P. M. (1987). Cross-system comparison of soil nitrogen transformations and nitrous oxide fluxes in tropical forest soils. Global Biogeochem. Cycles 1, 163-170.

Mattingly, G. E. C. (1975). Labile phosphate in soils. Soil Sci. 119, 369-375.

McDowell, W. H. (1998). Internal nutrient fluxes in a Puerto Rican rain forest./. Tropical Ecol. 14, 521-536.

McGill, W. B., and Cole, C. V. (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267-286.

McGuire, A. D., Melillo, J. M„ and Joyce, L. A. (1995). The role of nitrogen in the response of net primary productivity to elevated carbon dioxide. Annu. Rev. Ecol. Systematics 26, 473-503.

McKane, R. B„ Rastetter, E. B„ Melillo, J. M„ Shaver, G. R„ Hopkinson, C. S., Fernandes, D. N„ Skole, D. L„ and Chomentowski, W. H. (1995). Effects of global change on carbon storage in tropical forests of South America. Global Biogeochem. Cycles 9, 329-350.

McLaren, R. G., and Cameron, K. C. (1996). "Soil Science. Sustainable Production and Environmental Protection." Oxford University Press.

McPharlin, I. R„ and Bieleski, R. L. (1989). P, efflux and influx in P-ade-quate and P-deficient Spirodela and Lemna. Aust. J. Plant Physiol. 16, 391-399.

Medina, E. (1981). Nutrient balance and physiological processes at the leaf level. In "Physiological Ecology of Plants in the Wet Tropics" (E. Medina, H. Mooney and C. Vasquez-Yanes, Ed.), pp. 139-154. Dr. W. Junk, The Hague.

Medina, E„ and Cuevas, E. (1989). Patterns of nutrient accumulation and release in Amazonian forests of the Rio Negro Basin. In "Mineral Nutrients in Tropical Forest and Savanna Ecosystems" (J. Proctor, Ed.), pp. 217-240. Blackwell Scientific Publications, Oxford.

Medina, E., and Klinge, H. (1983). Productivity of tropical forests and tropical woodlands. In "Encyclopedia of Plant Physiology 12D." (O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, Ed.), pp. 281-303. Springer-Verlag, Berlin, Heidelberg, New York.

Meir, P. (1996). "The Exchange of Carbon Dioxide in Tropical Forest" Ph.D thesis, University of Edinburgh, Edinburgh.

Meuller-Harvey, I., Juo, A. S. R., and Wild, A. (1985). Soil organic C, N, S and P after forest clearance in Nigeria: mineralisation rates and spatial variability./. Soil Sci. 36, 586-591.

Muljadi, D„ Posner, A. M„ and Quirk, J. P. (1966). The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part I. The isotherms and the effect of pH an adsorption. /. Soil Sci. 17, 212-229.

Neill, C„ Piccolo, M. C„ Steudler, P. A., Melillo, J. M„ Feigl, B. J„ and Cerri, C. C. (1995). Nitrogen dynamics in soils and active pastures in the western Brazilian Amazon Basin. Soil Biol. Biochem. 27, 1167-1175.

Newberry, D. M. C„ Alexander, I. J„ and Rother, J. A. (1997). Phosphorus dynamics in a lowland African rainforest: the influence of ectomyc-corhizal trees. Ecol. Monographs 67,367-409.

Nye, P. H. (1961). Organic matter and nutrient cycles under moist tropical forest. Plant and Soil 13, 333-346.

Nye, P. H. and Bertheux, M. H. (1957). The distribution and significance of phosphorus in forest and savanna soils of the Gold Coast and its agricultural significance. /. Agri. Sci. 49, 141- 149.

Oberbauer S. F„ Strain B. R„ and Fetcher N. (1985). Effect of CO,-enrich-ment on seedling physiology and growth of two tropical tree species. Physiologia Plantarum 65, 352-356.

Ognalaga, M., Frossard, E, and Thomas, E. (1994). Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanism on geothite. Soil Sci. Soc. Am. J. 58, 332-337.

Olander, L. P., and Vitousek, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49, 175-190.

Parker, G. G. (1983). Throughfall and stemflow in the forest nutrient cycle. Adv. Ecol. Res. 13, 57-133.

Parton, W. J., Stewart, J. W. B„ and Cole, C. V. (1988). Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry 5, 109-131.

Peng, S., Eissenstat, D. M„ Graham, J. H„ Williams, K„ and Hodge, N. C. (1993). Growth depression in mycorrhizal citrus at high phosphorus supply: Analysis of carbon costs. Plant Physiol. 101, 1063-1071.

Phillips, O. L., Malhi, Y„ Higuchi, N., Laurance, L. F., Nunez, V. P. Vas-queth, M. R. Laurance, S. G., Ferreira, L. V, Stern, M„ Brown, S., and Grace, J. (1998). Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 282, 439-442.

Poorter, H. (1993). Interspecific variation in the growth-response of plants to an elevated ambient C02 concentration. Vegetatio 104/105, 77-97.

Poorter, H. (1998). Do slow-growing species and nutrient stressed plants respond relatively strongly to elevated CO, ? Global Change Biol. 4, 693-697.

Proctor, J. (1987). Nutrient cycling in primary and secondary rainforests. Appl. Geogr. 7, 135- 152.

Phillips. O. L„ Hall, P., Gentry, A. H„ Sawyer, S. A., and Vasquez, R. (1994). Dynamics and species richness of tropical rainforests. Proc. Natl. Acad. Sci. U.S.A. 91, 2805-2809.

Raaimakers, LX, and Lambéis, H. (1996). Response to phosphorus supply of tropical tree seedlings: a comparison between a pioneer species Tapirira obusla and a climax species Lccylhis corrúgala. New Phytol. 132, 97-102.

Raaimakers, D„ Boot, R. G. A., Dijkstra, P., Pot, S„ and Pons, T. (1995). Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical species. Oecologia 102, 120-125.

Raghothama, K. G. (1999). Phosphate acquisition. Aiinu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665-691.

Raich, J. W„ Russell, A. E„ Crews, T. E„ Farrington, H„ and Vitousek, P. M. (1996). Both nitrogen and phosphorus limit plant production oil young Hawaiian lava flows. Biogcocheniistry 32, 1-14.

Rayner, P. J., Enting, I. G„ Francey, R. J., and Langenfeld, R. L. (1999). Reconstructing the recent carbon cycle from atmospheric C02, £>' !C and 0,/N2 observations. Tellus 51B, 213-232.

Reekie E. G., and Bazzaz F. A. (1989). Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated CO,. Oecologia 79, 212-222.

Reich, P. B„ Ellsworth, I). S„ and Uhl, C. (1995). Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophy Amazonian forest. Functional Ecol. 9, 65-76.

Richards, P. W. (1996). "The Tropical Rain Forest: An Ecological Study;' 2nd ed. Cambridge University Press, Cambridge.

Richter, D. D„ and Babbar, L. I. (1991). Soil diversity in the tropics. Adv. Ecol. Res. 21, 315-389.

Rincón, E„ and Huante, 1'. (1994). Influence of mineral nutrient availability on growth of tree seedlings from the tropical deciduous forest. Trees 9,93-97.

Sample, E. C., Soper, R. J., and Racz, G. C. (1980). Reaction of phosphorus fertilizers in soils. In "The Role of Phosphorus in Agriculture." (M. Stellv, Ed.), pp. 263-310. Soil Science Society of America, Madison, Wisconsin.

Sanchez, P. A. (1976). "Properties and Management of Soils in the Tropics." Wiley, New York.

Sanyal, S. K., and DeDatta, S. K. (1991). Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16, 1-120.

Schachtman, D. P., Reid, R. J„ and Ayling, S. M. (1998). Phosphorus uptake by plants: from soils to cell. Plant Physiol. 116, 447-453.

Sibanda, M. M„ and Young, S. D. (1989). The effect of humus acids and soil heating on the availability of phosphate in oxide-rich tropical soils. In "Mineral Nutrients in Tropical Forest and Savanna Ecosystems." (J. Proctor, Ed.), pp. 71-84. Blackwell Scientific Publications, Oxford.

Silver, W. (1994). Is tropical nutrient availability related to plant nutrient use in humid tropical forests. Oecologia 98, 336-343.

Silver, W. L., Lugo, A. E., and Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44, 301-328.

Singh, J. S„ Raghubanshi, A. S„ Singh, R. S„ and Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338, 499-500.

Smith, S. E., and Read, D. J. (1997). "Mycorrhizal Symbiosis." Academic Press, San Diego, CA.

Sollins, 1'., Robertson, G. P., and Uehara, G. (1988). Nutrient mobility in variable- and permanent-charge soils. Biogeochemistry 6, 181 - 199.

Staddon, P. L„ and Fitter, A. H. (1998). Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol. Evolution 13,455-458.

Stark, N. M., and Jordan, C. F. (1978). Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59, 131 — 437

Stoorvogel, J. J., Janssen, B. H„ and Van Breemen, N. (1997). The nutrient budgets of a watershed and its forest ecosystem in the Tai National Park in Cote d'lvoire. Biogeochemistry 37, 159- 172.

Strauss, R., Brmmer, G. W„ and Barrow, N. J. (1997). Effects of crys-tallinity of geothite. II. Rates of sorption and desorption of phosphate. Eur.}. Soil Sci. 48, 101-114.

Swap, R., Garstang, M., and Greco, S. (1992). Saharan dust in the Amazon Basin. Tellus 44B, 133-149.

Tanner, E. V. J., Vitousek, P. M., and Cuevas, E. (1998). Experimental investigation of nutrient limitations of forest growth on wet tropical mountains. Ecology 79, 10-22.

Thompson, B. D., Clarkson, D. T., and Brain, P. (1990). Kinetics of phosphorus uptake by germ-tubes of the arbuscular fungus Gigaspora mar-ginata. New Phytol. 116, 647-653.

Tiessen, H., Chacon, P., and Cuevas, E. (1994a). Phosphorus and nitrogen status in soil and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia 99, 145-150.

Tiessen, H., Cuevas, E„ and Chacon, P. (1994b). The role of soil organic matter in sustaining soil fertility. Nature 371, 783-785.

Tiessen, H., Salcedo, I. H., and Sampaio, E. V. S. B. (1992). Nutrient and soil organic matter dynamics under shifting cultivation in semi-arid northeastern Brazil. Agri. Ecosystems Environ. 38, 139-151.

Uehara, G„ and Gillman, G. P. (1981). "The Mineralogy, Chemistry and Physics of Tropical Soils with Variable Charge Clays!' Westview, Boulder, Colorado.

Uhl, C., and Jordan, C. F. (1984). Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology 65, 1476-1490.

Veenendaal, E. M., Swaine, M. D., Lecha, R. T., Walsh, M. F., Abebrese, I. K„ and Owusu-Afriyie, K. (1996). Responses of West African forest tree seedlings to irradiance and soil fertility. Functional Ecol. 10, 501-511.

Veneklass, E. J. (1990). Nutrient fluxes in bulk precipitation and through-fall in two montane tropical forests, Columbia./. Ecol. 78, 974 - 992.

Vitousek, P. (1984). Litterfall, nutrient cycling an nutrient limitation in tropical forests. Ecology 65, 285-298.

Vitousek, P. M„ Fahey, T„ Johnson, D. W„ and Swift, M. J. (1988). Element interactions in forest ecosystems: Succession, allometry and input-output budgets. Biogeochemistry 5, 7-34.

Vitousek, P. M„ and Farrington, H. (1997). Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry 37, 63-75.

Vitousek, P. M., and Sanford, R. L. Jr. (1986). Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Systematics 17, 137-167.

Vitousek, P., Walker, L. R„ Whitekar, L. D„ and Matson, P. A. (1993). Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry 23, 197-215.

Walker, T. W., and Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma 15, 1-19.

Walter, H. (1936). Nährstoffgehalt des Bodens und natürliche Waldbestände. Forstliche Wochenschrift Silva 24, 201-205,209-213.

Walter, H. (1971). "Ecology of Tropical and Subtropical Vegetation." Oliver 8; Boyd, Edinburgh.

Watt, M. and Evans, J. R- (1999). Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric C02 concentration. Plant Physiol. 120, 705-716.

Westin, F. C., and de Brito, J. G. (1969). Phosphorus fractions of some Venezeulan soils in relation to weathering. Soil Sei. 107, 124-202.

Whipps, J. (1985). Effect of CO, concentration on growth, carbon distribution and loss of carbon from the roots of maize. /. Exp. Botany 36, 644-651.

Whitmore, T. C. (1989). Tropical forest nutrients, where do we stand ? A tour de horizon. In "Mineral Nutrients in Tropical Forest and Savanna

Ecosystems" (J. l'roctor, Ed.), pp. 1-14. Blackwell Scientific Publications, Oxford.

Williams, M. R., fisher, T„ and Melack, ). M. (1997). Chemical composition and deposition of rain in the central Amazon, Brazil. Atmos. Environ. 31,207-217.

Winter, K„ and Lovelock, C. E. (1999). Growth responses of seedlings of early and late successional tropical forest trees to elevated atmospheric CO,. Flora 194,221-227.

Wiirth, M. K. R„ Winter, K„ and Körner, C. (1998). In situ responses to elevated C02 in tropical forest understory plants. Functional Ecol. 12, 886-895.

Younge, O. R. and Plucknett, D. L. (1966). Quenching the high phosphorus fixation of Hawaiian latosols. Soil Sei. Soc. Am. Proc. 30, 653-655.

Ziska, L. H., Hogan, K. P., Smith, A. P., and Drake, B. G. (1991). Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon-dioxide. Oecologia 86,383-389.

0 0

Post a comment