Ando, K., and M. J. McPhaden, 1997: Variability of surface layer hydrography in the tropical Pacific Ocean. J. Geophys. Res., 102, 23063-23078.

Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674-701.

Atlas, R., O. Reale, B.-W. Shen, S.-J. Lin, J.-D. Chern, W. Putman, T. Lee, K.-S. Yeh, M. Bosilovich, and J. Radakovich, 2005: Hurricane forecasting with the high-resolution NASA finite volume general circulation model. Geophys. Res. Lett., 32, L03807, doi:10.1029/ 2004GL021513.

Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic airmass data sets. Quart. J. Roy. Meteor. Soc., 112, 692-709.

Betts, A. K., and W. Ridgway, 1988: Coupling of the radiative, convective and surface fluxes over the equatorial Pacific. J. Atmos. Sci., 45, 522-536.

Betts, A. K., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 2621-2641.

Braham, R. R., Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227-242.

Chen, J.-P., and S.-T. Liu, 2004: Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 51-78.

Cheng, M.-D., and M. Yanai, 1989: Effects of downdrafts and mesoscale convective organization on the heat and moisture budgets of tropical cloud cluster. Part III: Effects of mesoscale convective organization. J. Atmos. Sci., 56, 3028-3042.

Chou, M.-D., D. P. Kratz, and W. Ridgway, 1991: IR radiation parametrization in numerical climate studies. J. Climate, 4, 424-437.

Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parametrization for use in General Circulation Model. NASA Technical Memorandum 104606, Vol. 3, 85 pp.

Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee, 1997: Parameteriza-tions for cloud overlapping and shortwave single-scattering properties for use in General Circulation and Cloud Ensemble Models. J. Climate, 11, 202-214.

Del Genio, A. D., N.-S. Yao, W. Kovari, and K.-W. Lo, 1996: A prognostic cloud water parametriza-tion for general circulation models. J. Climate, 9, 270-304.

Doswell, C. A., III, H. E. Brooks, and R. A. Mad-dox, 1996: Flash flood forecasting: an ingredients-based methodology. Wea. Forecasting, 11, 560-581.

Ferrier, B. S., J. Simpson, and W.-K. Tao, 1996: Factors responsible for different precipitation efficiencies between midlatitude and tropical squall simulations. Mon. Wea. Rev., 124, 2100-2125.

Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489-529.

Fu, R., A. D. Del Genio, W. B. Rossow, and W. T. Liu, 1992: Cirrus cloud thermostat for tropical sea surface temperatures tested using satellite data. Nature, 358, 394-397.

Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 3684-3709.

Grabowski, W. W., 2001: Coupling cloud processes with convection parameterizaiton (CRCP). J. Atmos. Sci., 58, 978-997.

Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud-resolving convection parametrization for modeling the tropical convective atmosphere. Physica D, 133, 171-178.

Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 1171-1188.

Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6, 2049-2062.

Hsie, E. Y., R. D. Farley, and H. D. Orville, 1980: Numerical simulation of ice phase convective cloud seeding. J. Appl. Meteor., 19, 950-977.

Inamdar, A. K., and V. Ramanathan, 1994: Physics of greenhouse effect and convection in warm oceans. J. Climate, 7, 715-731.

Johnson, D., W.-K. Tao, J. Simpson, and C.-H. Sui, 2002: A study of the response of deep tropical clouds to mesoscale processes: Part I: Modeling strategies and simulations of TOGA-COARE convective systems. J. Atmos. Sci., 59, 3492-3518.

Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud-resolving model as a cloud parametriza-tion in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett. , 28, 3617-3620.

Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7, 559-565.

Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1093.

Koenig, L. R., 1971: Numerical modeling of ice deposition. J. Atmos. Sci., 28, 226-237.

Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 546-551.

Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvement of an ice-phase microphysics parametrization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281-287.

Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40-63.

Kuo, H. L., 1974: Further studies of the parametrization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232-1240.

Lau, K.-M., T. Nakazawa, and C.-H. Sui, 1991: Observations of cloud cluster hierarchy over the tropical western Pacific. J. Geophys. Res. 96, 3197-3208.

Lau, K.-M., C.-H. Sui, and W.-K. Tao, 1993: A preliminary study of the tropical water cycle using the Goddard Cumulus Ensemble model. Bull. Amer. Meteor. Soc. 74, 1313-1321.

Lau, K.-M., C.-H. Sui, M.-D. Chou, and W.-K. Tao, 1994a: An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature. Geophys. Res. Lett., 21, 1157-1160.

Lau, K.-M., C.-H. Sui, M.-D. Chou, and W.-K. Tao, 1994b: Reply to the comment on the paper "An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature," by V. Ramanathan, W. D. Collins, and B. Subasilar. Geophys. Res. Lett., 21, 1187-1188.

Lau, K.-M., and C.-H Sui, 1997: Mechanisms of short-term sea surface temperature regulation: observations during TOGA COARE. J. Climate, 10, 465-472.

Lau, K. M., and H. T. Wu, 2003: Warm rain over tropical oceans and climate implications. Geo-phys. Res. Lett., 30, doi:10.1029/ 2003GL018567.

Lau, K. M., H. T. Wu, Y. C. Sud, and G. K. Walker, 2005: Effects of cloud microphysics on tropical atmospheric hydrologic processes and intraseasonal variability in the GEOS GCM, J. Climate, 18, 4731-4751.

Liang, X.-Z., and X. Wu, 2005: Evaluation of a GCM subgrid cloud-radiation interaction parametrization using cloud-resolving model simulations. Geophys. Res. Lett., 32, L06801, doi:10.1029/2004GL022301.

Li, X., C.-H. Sui, D. Adamec, and K.-M. Lau, 1998: Impacts of precipitation in the upper ocean in the western Pacific warm pool during TOGA COARE. J. Geophys. Res., 103, C3, 5347-5359.

Li, X., C.-H. Sui, K.-M. Lau, and M.-D. Chou, 1999: Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56, 3028-3042.

Li, X., C.-H. Sui, K.-M. Lau, and D. Adamec, 2000: Effects of precipitation on ocean mixed-layer temperature and salinity as simulated in a 2-D coupled ocean-cloud-resolving atmosphere model. J. Meteor. Soc. Japan, 78, 647-659.

Li, X., C.-H. Sui, and K.-M. Lau, 2002a: Precipitation efficiency in the tropical deep convective regime: a 2-D cloud-resolving modeling study. J. Meteor. Soc. Japan, 80, 205-212.

Li, X., C.-H. Sui, and K.-M. Lau, 2002b: Interactions between tropical convection and its environment: an energetics analysis of a 2-D cloud resolving simulation. J. Atmos. Sci., 59, 1712-1722.

Li, X., C.-H. Sui, and K.-M. Lau, 2002c: Dominant cloud-microphysical processes in a tropical oceanic convective system: a 2-D cloud resolving modeling study. Mon. Wea. Rev., 130, 24812491.

Li, X., C.-H. Sui, K.-M. Lau, and W.-K. Tao, 2005: Tropical convective responses to microphysical and radiative processes: a sensitivity study with a 2D cloud-resolving modeling study. Meteor. Atmos. Phys., 90, 245-259.

Lin, S.-J., 2004: A "vertically Lagrangian" finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293-2307.

Lin Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parametrization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.

Lipps, F. B., and R. S. Hemler, 1986: Numerical simulation of deep tropical convection associated with large-scale convergence. J. Atmos. Sci., 43, 1796-1816.

Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71, 288-299.

Lindzen, R. S., M. D. Chou, and A. Hou, 2001: Does the earth have an adaptive infrared Iris? Bull. Am. Meteor. Soc., 82, 417-432.

Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tel-lus, 7, 157-167.

Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geo-phys. Res., 96, 3343-3457.

Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 2026-2037.

Mapes, B. E., and R. A. Houze, Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 1398-1415.

Miura, H., H. Tomita, T. Nasuno1, S. Iga1, M. Satoh, and T. Matsuno, 2005: A climate sensitivity test using a global Cloud Resolving Model under an aqua planet condition. Geophys. Res. Lett., 32, L19719, dot:10.1029/2005GL023672.

Newell, R. E., 1979: Climate and the ocean. Amer. Sci., 67, 405-416.

Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models. In Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus (ed.), Pergamon, New York, pp. 143-172.

Orville, H. D., and F. J. Kopp, 1977: Numerical simulation of the life history of a hailstorm. J. At-mos. Sci., 34, 1596-1618.

Peng, L., C.-H. Sui, K.-M. Lau, and W.-K. Tao, 2001: Genesis and evolution of hierarchical cloud clusters in a two-dimensional cumulus-resolving model. J. Atmos. Sci., 58, 877-895.

Prabhakara, C., D. P. Kratz, J.-M. Yoo, G. Dalu, and A. Vernekar, 1993: Optically thin cirrus clouds: radiative impact on the warm pool. J. Quant. Spectrosc. Radiat. Transfer., 49, 467-483.

Ramanathan, V., and W. Collins, 1991: Thermo-dynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino. Nature, 351, 27-32.

Ramanathan, V., W. D. Collins, and B. Subasilar, 1994: Comments on the paper "An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature." Geophys. Res. Lett., 21, 1185-1186.

Randall, D. A., and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parametrization with a prognostic closure. In The Representation of Cumulus Convection in Numerical Models of the Atmosphere, K. A. Emanuel and D. J. Raymond, (eds.) Meteor. Monogr., No. 46, pp. 37-144.

Randall, D. A., Harshvardhan and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 40-62.

Randall, D. A., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parametrization deadlock.Bull. Amer. Meteor. Soc., 1547-1564.

Rutledge, S. A., and R. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the "seederfeeder" process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185-1206.

Rutledge, S. A., and R. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949-2972.

Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasuno, 2005: Development of a global cloud resolving model — a multi-scale structure of tropical convections. J. Earth Simulator, 3, 1-9.

Simpson, J., R. Adler, and G. North, 1988: A proposed Tropical Rainfall Measuring Mission

(TRMM) satellite. Bull. Am,er. Meteor. Soc., 69, 278-295.

Soden, B. J., 1997: Variations in the tropical greenhouse effect during El Nino. J. Climate, 10, 10501055.

Soong, S. T., and Y. Ogura, 1980a: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035-2050.

Soong, S. T., and W. K. Tao, 1980b: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 2016-2034.

Sud, Y. C., and G. K. Walker, 1999: Microphysics of clouds with the relaxed Arakawa-Schubert cumulus scheme (McRAS); Part I: Design and evaluation with GATE Phase III data. J. Atmos. Sci., 56, 3196-3220.

Sud, Y. C., and G. K. Walker, 2003: Influence of ice-phase physics of hydrometeors on moist convection. Geophys. Res. Lett. 30, 14, 1758-1761.

Sui, C.-H., K.-M. Lau, and A. K. Betts, 1991: An equilibrium Model for the coupled ocean-atmosphere boundary layer in the tropics. J. Geophys. Res., 96, 3151-3163.

Sui, C.-H., and K.-M. Lau, 1992: Multi-scale phenomena in the tropical atmosphere over the western Pacific. Mon Wea. Rev., 120, 407-430.

Sui, C.-H., K.-M. Lau, W.-K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711-728.

Sui, C.-H., K.-M. Lau, Y. Takayabu, and D. Short, 1997a: Diurnal variations in tropical oceanic cumulus ensemble during TOGA COARE. J. At-mos. Sci., 54, 639-655.

Sui, C.-H., X. Li, K.-M. Lau, and D. Adamec, 1997b: Multi-scale air-sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448-462.

Sui, C.-H., X. Li, and K.-M. Lau, 1998a: Radiative-convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55, 2345-2359.

Sui, C.-H., X. Li, and K.-M. Lau, 1998b: Selective absorption of solar radiation and upper ocean temperature in the equatorial western Pacific. J. Geophys. Res., 103, C5, 10313-10321.

Sui, C.-H., X. Li, M. M. Rienecker, K.-M. Lau, I. Laszlo, and R. T. Pinker, 2003: The impacts of daily surface forcing in the upper ocean over tropical Pacific: a numerical study. J. Climate, 16, 756-766.

Sui, C.-H., and Li, X., 2005: A tendency of cloud ratio associated with the development of tropical water and ice clouds. Terr. Atmos. Oceanic Sci., 16, 419-434.

Sui, C.-H., X. Li, M.-J. Yang, and H.-L. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 43584370.

Sui, C.-H., C.-T. Tsay, and X. Li, 2007a: Convective-stratiform rainfall separation by cloud content. J. Geophys. Res. 112, D14213, doi:10.1029/2006JD008082.

Sui, C.-H., X. Li, and M.-J. Yang, 2007b: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 4506-4513.

Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models from weather prediction and general circulation simulation. In Physical Based Modeling and Simulation of Climate and Climate Change, M. E. Schlesinger (ed.), Reidel, pp. 433-461.

Sundqvist, H., 1978: A parametrization of non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677-690.

Tao, W.-K, 2003: Goddard Cumulus Ensemble (GCE) model: application for understanding precipitation processes. In Cloud Systems, Hurricanes, and the Tropical Rainfall Mea,suri,n,g Mission (TRMM): A Tribute to Dr Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., pp. 107-138.

Tao, W.-K., and J. Simpson, 1984: Cloud interactions and merging: numerical simulations. J. Atmos. Sci., 41, 2901-2917.

Tao, W.-K., and S.-T. Soong, 1986: The study of the response of deep tropical clouds to mesoscale processes: three-dimensional numerical experiments. J. Atmos. Sci., 43, 2653-2676.

Tao, W.-K., and J. Simpson, 1989: A further study of cumulus interactions and merging: three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, 2974-3004.

Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr., Atmos. Oceanic Sci., 4, 35-72.

Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235.

Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. S. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the tropics and midlatitude. J. Atmos. Sci., 53, 2624-2651.

Tao, W.-K., J. Simpson, D. Baker, S. Braun, M.-D. Chou, B. Ferrier, D. Johnson, A. Khain, B. Lynn, S. Lang, C.-L. Shie, C.-H. Sui, Y. Wang, and P. Wetzel, 2003: Microphysics, radiation, and surface processes in a non-hydrostatic model. Meteor. Atmos. Phys., 82, 97-137.

Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson, 2004: The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: cloud-resolving model simulations. J. Atmos. Sci., 61, 2405-2423.

Tiedtke, M., 1993: Representation of clouds in large scale models. Mon. Wea. Rev., 121, 3040-3061.

Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: preliminary results from an aqua planet experiment, Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

Thompson, R. M., Jr., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36, 53-72.

Vialard, J., and P. Delecluse, 1998a: An OGCM study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool. J. Phys. Oceanog., 28, 1071-1088.

Vialard, J., and P. Delecluse, 1998b: An OGCM study for the TOGA decade. Part II: Barrier layer formation and variability. J. Phys. Oceanog., 28, 1089-1106.

Wang, J., and D. A. Randall, 1994: The moist available energy of a conditionally unstable atmosphere. Part II: Further analysis of GATE data. J. Atmos. Sci., 51, 703-710.

Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.

Wu, X., and X.-Z. Liang, 2005: Effect of sub-grid cloud-radiation interaction on climate simulations. Geophys. Res. Lett., 32, L06801, doi:10.1029/2004GL022301.

Wu, X., and M. W. Moncrieff, 2001: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part III: Effects on the energy budget and SST. J. Atmos. Sci., 58, 1155-1168.

Wu, X., X.-Z. Liang, G.-J., Zhang 2003: Seasonal migration of ITCZ precipitation across the equator: Why can't GCMs simulate it? Geophys. Res. Lett., 30, 1824, doi:10.1029/2003GL017198.

Wu, X., W. W. Grabowski, and M. W. Mon-crieff, 1998: Long-term evolution of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional cloud-resolving model. J. Atmos. Sci., 55, 2693-2714.

Xu, K.-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud-radiation interactions. J. Atmos. Sci., 52, 800-817.

Xu, K.-M., and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE Phase III data: comparison with observations. J. Atmos. Sci., 53, 3710-3736.

Xu, K.-M., and D. A. Randall, 1998: Influence of large-scale advective cooling and moistening effects on the quasi-equilibrium behavior of explicitly simulated cumulus ensembles. J. Atmos. Sci., 55, 896-909.

Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611-627.

Yang, M.-J., and H.-L. Huang, 2004: Precipitation processes associated with the landfalling Typhoon Nari (2001). In Preprints, The 26th Conference on Hurricanes and Tropical Meteorology, Miami, 3-7 May 2004, Amer. Meteor. Soc., pp. 134-135.

Zhang, G.-J., and X. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 1120-1139.

Zhang, M. H., R. D. Cess, and S. C. Xie, 1996: Relationship between cloud radiative forcing and sea surface temperatures over the entire tropical oceans. J. Climate, 9, 1374-1384.

Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 1931-1953.

Understanding Atmospheric Catastrophes

Winston C. Chao

Laboratory for Atmospheres, Goddard Space Flight Center, Greenbelt, Maryland, USA

[email protected]

The atmosphere, like other parts of nature, is full of phenomena that involve rapid transitions from one (quasi-)equilibrium state to another, i.e. catastrophes. These (quasi-)equilibria are the multiple solutions of the same dynamical system. Unlocking the mystery behind a catastrophe reveals not only the physical mechanism responsible for the transition, but also how the (quasi-) equilibria before and after the transition are maintained. Each catastrophe is different, but they do have some common traits. Understanding these common traits is the first step in studying these catastrophes. In this article, three examples are reviewed to show how atmospheric catastrophes can be studied.

0 0

Post a comment