The coproduction of knowledge

The lesson from science and technology studies is that knowledge is not independent of politics in framing environmental issues. Rather, most global environmental issues have emerged from an interplay between science and policy. For example, Jasanoff and Wynne argue that environmental phenomena are constructed by a myriad of social interactions within scientific communities and with actors outside science who play a role in defining problems and endorsing solutions.58 Climate science is no exception. In fact it is an unusually clear example of what Jasanoff and Wynne call co-production of knowledge and policy. According to their analysis "scientific knowledge and political order are co-produced at multiple stages in their joint evolution, from the stabilization of specialized factual findings in laboratory and field studies to national and international acceptance of causal explanations offered by science and their use in decision making."59 In this co-production, science and policy derive legitimacy from each other.60 In relation to scientific assessment of climate change impacts, Long and Iles argue that "a scientific assessment can be thought of as 'trading zone' where questions over data, research priorities, participation and methodological approaches are negotiated among scientists, assessors, policy-makers, and other assessment users."61 The term co-production is today used by an increasing number of authors who wish to emphasize the socially constructed nature of knowledge. There are also attempts to connect a previous focus on the micro-dynamics of how knowledge is constructed in science and technology studies to the more macro-oriented approaches that also look at the role of institutions.62

Co-production suggests that knowledge about climate change should not only be investigated based on its connection to observations of nature, computer models, or other

57 Bäckstrand, What Can Nature Withstand?, e.g. 54, 70.

58 Jasanoff and Wynne, "Science and Decision Making," 4.

59 Jasanoff and Wynne, "Science and Decision Making," 6.

60 Jasanoff and Wynne, "Science and Decision Making," 16.

61 Marybeth Long and Alastair Iles, Assessing Climate Change Impacts: Co-Evolution of Knowledge, Communities, and Methodologies, Kennedy School of Government, Harvard University, 1997), 2.

62 Sheila. Jasanoff, "The Ideom of Co-Production," in States of Knowledge. The Co-production of Science and Social Order, ed. Sheila Jasanoff, 1-12 (London and New York: Routledge, 2004), 4-5.

climate science tools. The analysis should also pay close attention to human agency, cultural discourses, and the social goals of climate science and policy. As climate change is often framed as a global environmental issue, a starting point for this dissertation is that it is also of interest to analyze what role international regimes might play in initiating and structuring knowledge production. Such work has previously highlighted how the framing of climate change as a global issue has involved the creation of credible global institutions.63

As the concept itself suggests, the idea of co-production is relevant not only for understanding science but also for understanding science-intensive politics. In a study on the role of science in the Convention on Long-Range Transboundary Air Pollution, Lid-skog and Sundqvist argue that co-production of knowledge is a prerequisite for effective regime formation and places this in contrast to theories that emphasize scientific knowledge per se (e.g. epistemic community thinking) or approaches that downplay the role of science in regime formation.64

The interdependent relationship between science and policy is not necessarily acknowledged by the participants in the process. In fact, there is often a need to clearly demarcate the boundaries between science and other activities as a way of maintaining credibility and legitimacy in relation to different audiences. Gieryn defines such boundary work as the attribution of selected characteristics to the institution of science for purposes of constructing a social boundary that distinguishes some intellectual activities as non-science.65 Long and Iles describe this as "dealing with activities of creating and maintaining 'lines' dividing research domains, knowledge, disciplines, expert jurisdiction, and institutional responsibilities."66 In practical terms, boundary work becomes apparent in efforts to affirm scientific responsibility over certain areas and policy initiative in others. In scientific assessments, the boundary between science and policy are porous. Nevertheless, there are often ambitions to uphold the demarcation. A focus on boundary work can be used to enhance our understanding of how the value of knowledge is decided in a regime and what knowledge is deemed credible and legitimate in relation to a specific policy issue.67 To make it analytically usable, the focus should not be on the separation of science and policy as such but on the bargaining and tensions between the spheres and the consequences of where the boundaries become placed in a specific process. Empirically it becomes important to identify how, when, why, and by whom boundaries between science and policy are maintained or shifted and how this affects a process and its outcome.

The concept of co-production also requires a working definition of what is co-produced. For my purposes, the shorthand expressions policy and science are not always

63 Clark A. Miller, "Climate Science and the Making of Global Political Order," in States of Knowledge. The Co-production of Science and Social Order, ed. Sheila Jasanoff, 46-66 (London and New York: Routledge, 2004).

64 Rolf Lidskog and Göran Sundqvist, "The Roles of Science in Environmental Regimes: the Case of LRTAP," European Journal of International Relations 8, no. 1 (2002): 77, 94.

65 T. F. Gieryn, "Boundaries of Science," in Handbook of Science and Technology Studies, eds. Shiela Jasanoff, Markle Gerlad E., James C. Petersen, and Pinch Trevor, 393-443 (Thousand Oaks: Sage, 1995), 405.

66 Long and Iles, Assessing Climate Change Impacts, 4.

67 Lidskog and Sundqvist, "The Roles of Science in Environmental Regimes: the Case of LRTAP," 184.

sufficient. Policy can be defined as "a collection of decisions regarding a question that are shaped in processes by actors based on their values and resources."68 This definition may be sufficient for discussing how science influences political decision making but it is not adequate for analyzing the other side of co-production. Consequently, Jasanoff and Wynne's term political order is more appropriate as a concept that includes governance arrangements and other political structures rather than focusing only on political plans of actions and how they are shaped.69 The word science is also too narrow for the purposes of this dissertation, as its common usage refers to western academic scientific disciplines.70 I, therefore, often use the wider term knowledge production, which leaves open to analysis what knowledge is considered legitimate in each specific context and also emphasizes that knowledge is not static but is the result of on-going social activities. I will not enter into the philosophical debate of what can be known, but a broad, yet concise working definition of knowledge could be "what is known," thus leaving it to empirical analyses to illustrate which knowledges get counted.71

Was this article helpful?

0 0

Post a comment