1. M.C. Jacobson, R.J. Charlson, H. Ordhe, G. Orians (2000). Earth System Science: From Biogeochemical Cycles to Global Change. Academic Press, San Diego.

2. W.H. Schlesinger (1997). Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego.

3. K. Mopper, D.J. Kieber (2000). Marine photochemistry and its impact on carbon cycling. In: S. de Mora, S. Demers, M. Vernet (Eds), The Effects of UVRadiation in the Marine Environment (pp. 101-129). Cambridge University Press, Cambridge.

4. W.L. Miller (1999). Effects of UV radiation on aquatic humus: Photochemical principles and experimental considerations. In: D. O.Hessen, L.Tranvik (Eds), Aquatic Humic Substances, (pp. 125-143). Springer-Verlag, Berlin.

5. N.V. Blough (1997). Photochemistry in the sea-surface microlayer. In: P. Liss, R. Duce (Eds), The Sea Surface and Global Change (pp. 383-424). Cambridge University Press, Cambridge.

6. R.G. Zepp, T.V. Callaghan, D.J. Erickson (1998). Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. J. Photochem. Photobiol. B\ Biol., 46, 69-82.

7. R.G. Zepp (1988). Environmental photoprocesses involving natural organic matter. In: F.H. Frimmel, R.F. Christman (Eds), Humic Substances and their Role in the Environment (pp. 193-214). Wiley, New York.

8. M.A. Moran, R.G. Zepp (1997). Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr., 42, 1307-1316.

9. D.J. Kieber (2000). Photochemical production of biological substrates. In: S. de Mora, S. Demers, M. Vernet (Eds), The Effects of UV Radiation in the Marine Environment (pp. 130-148). Cambridge University Press, Cambridge.

10. M.A. Moran, R.G. Zepp (2000). UV radiation effects on microbes and microbial processes. In: D. Kirchman (Ed.), Microbial ecology of the oceans (pp. 201-228). Wiley, New York.

11. J.J. Cullen, P.J. Neale (1994). Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth. Res., 39, 303-320.

12. P.J. Neale (2000). Spectral weighting functions for quantifying effects of UV solar radiation in marine ecosystems. In: S. de Mora, S. Demers, M. Vernet (Eds), The Effects of UV Radiation in the Marine Environment (pp. 72 -100). Cambridge University Press, Cambridge.

13. N. Blough, S. Green (1994). Spectroscopic characterization and remote sensing of non-living organic matter. In: R.G. Zepp, C. Sonntag (Eds), Role of non-living organic matter in the Earth's carbon cycle (pp. 42-57). Wiley, New York.

14. E.M. Thurman (1985). Organic Geochemistry of Natural Waters. Nijhoff/Junk, Boston.

15. D.M. McKnight, E.D. Andrews, S.A. Spaulding, G.R. Aiken (1994). Aquatic fulvic acids in algal-rich Antarctic ponds. Limnol. Oceanogr., 36, 998-1006.

16. D.M. McKnight, E.W. Boyer, P.K. Westerhoff, P.T. Doran, T. Kulbe, D.T. Andersen (2000). Spectrofluorometric characterization of dissolved organic matter for indicator of precursor organic material and aromaticity. Limnol. Oceanogr., 46, 38-48.

17. Y. Chin, G.R. Aiken, E. O'Loughlin (1994). Molecular weight, polydispersivity, and spectroscopic properties of aquatic humic substances. Environ. Sci. TechnoL, 28, 1853-1858.

18. N.V. Blough, R. Del Vecchio (2002). Distribution and dynamics of chromophoric dissolved organic matter (CDOM) in the coastal environment. In: D. Hansell, C. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 509-546). Academic Press.

19. R.J. Kieber, L.H. Hydro, P.J. Seaton (1997). Photooxidation of triglycerides and fatty acids in seawater: Implication toward the formation of marine humic substances. Limnol. Oceanogr., 42, 1454-1462.

20. J.A. Amador, M. Alexander, R.G. Zika (1989). Sequential photochemical and microbial degradation of organic molecules bound to humic acid. Appl. Environ. Microbiol,


21. S. Opsahl, R. Benner (1998). Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol. Oceanogr., 43,1297-1304.

22. R.J. Kieber, X. Zhou, K. Mopper (1990). Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol. Oceanogr., 35,1503-1515.

23. A.M. Kouassi, R.G. Zika (1992). Light-induced destruction of the absorbance property of dissolved organic matter in seawater. Toxicol. Environ. Chem., 35,195-211.

24. F.H. Frimmel (1994). Photochemical aspects related to humic substances. Environ. Int., 20, 373-385.

25. F.H. Frimmel (1998). Impact of light on the properties of aquatic natural organic matter. Environ. Int., 24, 559-571.

26. D.P. Morris, B.R. Hargreaves (1997). The role of photochemical degradation of dissolved organic matter in regulating UV transparency of three lakes on the Pocono Plateau. Limnol. Oceanogr., 42,239-249.

27. C.L. Osburn, H.E. Zagarese, D.P. Morris, B.R. Hargreaves, W.E. Cravero (2001). Calculation of spectral weighting functions for the solar photobleaching of chromo-phoric dissolved organic matter in temperate lakes. Limnol. Oceanogr., 46,1455-1467.

28. I. Reche, M.L. Pace, J.J. Cole (1999). Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry, 44, 259-280.

29. R.F. Whitehead, S. de Mora, S. Demers, M. Gosselin, P. Monfort, B. Mostajir (2000). Interactions of ultraviolet-B radiation, mixing, and biological activity on photobleaching of natural chromophoric dissolved organic matter: A mesocosm study. Limnol. Oceanogr., 45, 278-291.

30. A.J. Stewart, R.G. Wetzel (1981). Dissolved humic materials: photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol., 92,265-286.

31. D. Strome, M.C. Miller (1978). Photolytic changes in dissolved humic substances. Verh. Int. Verein. Limnol., 20,1248-1254.

32. D. Kotsias, M. Herrmann, A. Zsolnay, R. Bayerle-Pfnur, H. Parlar, F. Korte (1987). Photochemical aging of humic substances. Chemosphere, 16, 1463-1468.

33. D. Hongve (1994). Sunlight degradation of aquatic humic substances. Acta Hydro-chim. Hydrobiol, 3,117-120.

34. E.T. Gjessing, T. Gjerdahl (1970). Influence of ultra-violet radiation on aquatic humus. Vatten, 26,144-145.

35. R. Del Vecchio, N.V. Blough, Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling. Mar. Chem., submitted.

36. C.E. Del Castillo, P.G. Coble, J.M. Morell, J. M.Lopez (1999). Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar. Chem., 66, 35-51.

37. C.E. Del Castillo, F. Gilbes, P.G. Coble, F.E. Muller-Karger (2000). On the dispersal of riverine colored dissolved organic matter over the West Florida shelf. Limnol Oceanogr., 45,1425-1432.

38. M.A. Moran, W.M. Sheldon, R.G. Zepp (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr., 45,1254-1264.

39. C.D. Mobley (1994). Light and Water: Radiative Transfer in Natural Waters. Academic Press, San Diego.

40. C.D. Mobley, B. Gentili, H.R. Gordon, Z. Jin, G.W. Kattawar, A. Morel, P. Reiners-

man, K. Stamnes, R.H. Stavn (1993). Comparison of numerical models for computing underwater light fields. Appl. Opt., 32, 7484-7504.

41. J.T.O. Kirk (1994). Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

42. K.S. Baker, R.C. Smith (1982). Spectral irradiance penetration in natural waters. In: J. Calkins (Ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystems (pp. 79-91). Plenum Press, New York.

43. H.R. Gordon (1989). Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water? Limnol. Oceanogr., 34,1389-1409.

44. G.C. Miller, R.G. Zepp (1979). Effects of suspended sediments on photolysis rates of dissolved pollutants. Water Res., 13, 453-459.

45. D.-P. Häder, H.D. Kumar, R.C. Smith, R.C. Worrest. (1998). Effects on aquatic ecosystems. J. Photochem. Photobiol. B: Biol., 46, 53-68.

46. D.A. Siegel, A.F. Michaels (1996). Quantification of non-algal light attenuation in the Sargasso Sea: Implications for biogeochemistry and remote sensing. Deep-Sea Res., 43, 321-346.

47. I. Laurion, M. Ventura, J. Catalan, R. Psenner, R. Sommaruga (2000). Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability. Limnol. Oceanogr., 45,1274-1288.

48. D.P. Morris, H. Zagarese, C.E. Williamson, E.G. Balseiro, B.R. Hargreaves, B. Modenutti, R. Moeller, C. Queimalinos (1995). The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr., 40,1381-1391.

49. C.E. Williamson, R.S. Stemberger, D.P. Morris, T.M. Frost, S.G. Paulsen (1996). Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implications for plankton communities. Limnol. Oceanogr., 41, 1024-1034.

50. D.W. Schindler, J.P. Curtis, B.R. Parker, M.P. Stainton (1996). Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature, 379, 705-708.

51. A. Vodacek, N.V. Blough, M.D. DeGrandpre, E.T. Peltzer, R.K. Nelson (1997). Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnol. Oceanogr., 42, 674-686.

52. S. Markager, W.F. Vincent (2000). Spectral light attenuation of UV and blue light in natural waters. Limnol. Oceanogr., 45, 642-650.

53. N.K. Hojerslev (1982). Yellow substance in the sea. In: J. Calkins (Ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystems (pp. 263-281). Plenum Press, New York.

54. N.B. Nelson, D.A. Siegel, A.F. Michaels (1998). Seasonal dynamics of colored dissolved organic matter in the Sargasso Sea (Part I), Deep-Sea Res., 45, 931-957.

55. K.R. Arrigo, C.W. Brown (1996). Impact of chromophoric dissolved organic matter on UV inhibition of primary productivity in the sea. Mar. Ecol. Prog. Ser., 140, 204-216.

56. Y. Huot, W.H. Jeffrey, R.F. Davis, J.J. Cullen (2000). Damage to DNA in bacteriop-lankton: A model of damage by ultraviolet radiation and its repair as influenced by vertical mixing. Photochem. Photobiol., 72, 62-74.

57. N.V. Blough, R. Del Vecchio (2002). Distribution and dynamics of chromophoric dissolved organic matter (CDOM) in the coastal environment. In: D. Hansell C. Carlson (Eds), Biogeochemistry of Marine Dissolved Organic Matter (pp. 509-546). Academic Press.

58. H. De Haan (1993). Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnol. Oceanogr., 38,1072-1076.

59. H. Gao, R.G. Zepp (1998). Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environ. Sei. Technol., 32, 2940-2946.

60. S. Opsahl, R.G. Zepp (2001). Photochemically-induced alteration of stable carbon isotope ratios (delta13C) in terrigenous dissolved organic carbon. Geophys. Res. Lett., 28,2417-2420.

61. A.M. Kouassi, R.G. Zika, J.M.C. Plane (1990). Photochemical modeling of marine humus fluorescence in the ocean. Neth. J. Sea Res., 27, 33-41.

62. N. Blough, R.G. Zepp (1995). Reactive oxygen species in natural waters. In: C.S. Foote, J.S. Valentine, A. Greenberg, J.F. Liebman (Eds), Active Oxygen in Chemistry (pp. 280-333). Chapman & Hall, New York.

63. O.C. Zafiriou, J. Joussot-Dubien, R.G. Zepp, R.G. Zika (1984). Photochemistry of natural waters. Environ. Sei. Technol, 18, 358-371.

64. J.V. Goldstone, B.M. Voelker (2000). Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters. Environ. Sei. Technol, 34, 1043-1048.

65. J.V. Goldstone, M.J. Pullin, S. Bertilsson, B.M. Voelker (2002). Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavail-able carbon substrates. Environ. Sei. Technol., 36, 364-372.

66. R.G. Wetzel (1992). Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrohiologia, 229, 181-198.

67. W.L. Miller, M.A. Moran, W.M. Sheldon, R.G. Zepp, S. Opsahl (2002). Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnol Oceanogr., 47, 343-352.

68. S.S. Andrews, S. Caron, O.C. Zafiriou (2000). Photochemical oxygen demand in marine waters: A major sink for colored dissolved organic matter? Limnol. Oceanogr., 45,267-277.

69. J.I. Hedges (1992). Global biogeochemical cycles: progress and problems. Mar. Chem., 39, 67-93.

70. W.L. Miller, R.G. Zepp (1995). Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys. Res. Lett., 22,417-420.

71. W. Ludwig (2001). The age of river carbon. Nature, 409,466.

72. M.M. Caldwell, L.O. Björn, J.F. Bornman, S.D. Flint, G. Kulandaivelu, A.H. Teramura, M. Tevini (1998). Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochem. Photobiol. B: Biol, 46,40-52.

73. P. Falkowski, R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Högberg, S. Linder, F.T. Mackenzie, B.I. Moore, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen (2000). The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290, 291-296.

74. R. Zepp, T.V. Callaghan, D.J. Erickson (1998). Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. In: J.C. van der Leun, X. Tang, M. Tevini (Eds), Environmental Effects of Ozone Depletion - 1998 Assessment (pp. 113-136). United Nations Environment Programme (UNEP), Nairobi, Kemya.

75. R.C. Smith, B.B. Prezelin, K.S. Baker, R.R. Bidigare, N.P. Boucher, T. Coley, D. Karentz, S. Maclntyre, H.A. Matlick, D. Menzies, M. Onderusek, Z. Wan, K.J. Waters (1992). Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science, 255,952-959.

76. T.P. Coohil (1991). Photobiology school. Action spectra again? Photochem. Photo-biol, 54, 859-870.

77. P.J. Neale, D.J. Kieber (2000). Assessing biological and chemical effects of UV in the marine environment: Spectral weighting functions. In: R.E. Hester, R.M. Harrison (Eds), Causes and Environmental Implications of Increased U V-B Radiation. (Issues in Environmental Science and Technology, No. 14, pp. 61-83). The Royal Society of Chemistry, Cambridge.

78. R.D. Rundel (1986). Action spectra and estimation of biologically effective UV radiation. Physiol. Plant., 58, 360-366.

79. P.J. Neale, J.J. Cullen, R.F. Davis (1998). Inhibition of marine photosynthesis by ultraviolet radiation: Variable sensitivity of phytoplankton in the Weddel-Scotia confluence during the austral spring. Limnol. Oceanogr., 43,433-448.

80. A.T. Banaszak, P.J. Neale (2001). Ultraviolet radiation sensitivity of photosynthesis in phytoplankton from an estuarine environment. Limnol. Oceanogr., 46, 592-603.

81. M.P. Lesser, P.J. Neale, J.J. Cullen (1996). Acclimation of Antarctic phytoplankton: Ultraviolet absorbing compounds and carbon fixation. Mol. Mar. Biol. Biotechnol., 5, 314-325.

82. M.L. Bothwell, D.M.J. Sherbot, C.M. Pollock (1994). Ecosystem response to solar ultraviolet radiation: Influence of trophic level interactions. Science, 265,97-100.

83. S.C. Rhode, M. Pawlowski, R. Tollrian (2001). The impact of ultraviolet radiation on the vertical distribution of Zooplankton of the genus Daphnia. Nature, 412, 69-72.

84. D.M. Leech, C.E. Williamson (2001). In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnol. Oceanogr., 46, 416-420.

85. D. Turk, M.J. McPhaden, A.J. Busalacchi, M.R. Lewis (2001). Remotely sensed biological production in the Equatorial Pacific. Science, 293,471-474.

86. R. Pienitz, W.F. Vincent (2000). Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature, 404, 484-487.

87. N.V. Blough, R.G. Zepp (1990). Introduction, in Effects of Solar Ultraviolet Radiation on Biogeochemical Dynamics in Aquatic Environments, N.V. Blough, R.G. Zepp (Eds), Technical Report No. WHOI-90-09, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 1990, pp. 1-2.

88. W.F. Vincent, P.J. Neale (2000). Mechanisms of UV damage to aquatic organisms. In: S. de Mora, S. Demers, M. Vernet (Eds), The Effects of U V Radiation in the Marine Environment (pp. 149-176). Cambridge University,Press.

89. W.H. Jeffrey, P. Aas, M.M. Lyons, R.B. Coffin, R.J. Pledger, D.L. Mitchell (1996). Ambient solar-radiation induced photodamage in marine bacterioplankton. Photochem. Photobioi, 64,419-427.

90. W.H. Jeffrey, R.J. Pledger, P. Aas, S. Hager, R.B. Coffin, R. Vonhaven, D.L. Mitchell (1996). Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar. Ecol. Prog. Ser., 137, 283-291.

91. M.G. Weinbauer, S.W. Wilhelm, C.A. Suttle, D.R. Garza (1997). Photoreactivation of ultraviolet-radiation induced DNA damage is a major process controlling viral infectivity in the sea. Appl. Environ. Microbiol., 63, 2200-2205.

92. S.W. Wilhelm, M.G. Weinbauer, C.A. Suttle, W.H. Jeffrey (1998). The role of sunlight in the removal and repair of viruses in the sea. Limnol. Oceanogr., 43, 586-592.

93. C.M.T. Denward, H. Edling, L.J. Tranvik (1999). Effects of solar radiation on bacterial and fungal density on aquatic plant detritus. Freshwat. Biol., 41, 575-582.

94. D.J. Erickson, B.E. Eaton (1993). Global biogeochemical cycling estimates with CZCS satellite data and general circulation models. Geophys. Res. Lett., 20,683-686.

95. D.J. Erickson (1989). Ocean to atmosphere carbon monoxide flux: Global inventory and climate implications. Global Biogeochem. Cycles, 3, 304-314.

96. K. Mopper, X. Zhou, R.J. Kieber, D.J. Kieber, R.J. Sikorski, R.D. Jones (1991). Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 353, 60-62.

97. M. Springer-Young, D.J. Erickson, T.P. Carsey (1996). Carbon monoxide gradients in the marine boundary layer of the North Atlantic Ocean. J. Geophys. Res.-Atmos., 101, 4479-4484.

98. J.W. Swinnerton, V.J. Linnenbom, R.A. Lamontagne (1970). The ocean. A natural source of carbon monoxide. Science, 167, 984-986.

99. V.J. Linnenbom, J.W. Swinnerton, R.A. Lamontagne (1973). The ocean as a source of carbon monoxide. J. Geophys. Res.-Atmos., 78, 5333-5340.

100. R. Conrad, W. Seiler, G. Bunse, H. Giehl (1982). Carbon monoxide in seawater (Atlantic Ocean). J. Geophys. Res.-Atmos., 87, 8839-8852.

101. R. Conrad, W. Seiler (1988). Influence of the surface microlayer on the flux of nonconservative trace gases (CO, H2, CH4, N20) across the ocean-atmosphere interface. J. Atmos. Chem., 6, 83-94.

102. R.H. Gammon, K.C. Kelley (1990). Photochemical production of carbon monoxide in surface waters of the Pacific and Indian Oceans. In: R.G. Zepp, N.V. Blough (Eds), Effects of Solar Ultraviolet Radiation on Biogeochemical Dynamics in Aquatic Environments (pp. 58-60). Woods Hole Oceanographic Institution, Woods Hole, MA.

103. R.L. Valentine, R.G. Zepp (1993). Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters. Environ. Sci. Technol., 27 409-412.

104. T.S. Bates, K.C. Kelly, J.E. Johnson, R.H. Gammon (1995). Regional and seasonal variation in the flux of oceanic carbon monoxide to the atmosphere. J. Geophys. Res., 100, 23093-23101.

105. O.C. Zafiriou, S.A. Andrews, W. Wang. Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global "blue-water" CO budget, Global Biogeochem. Cycles, in press.

106. C.J. Miles, P.L. Brezonik (1981). Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Environ. Sci. Technol, 15,1089-1095.

107. B.C. Faust, R.G. Zepp (1993). Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol, 27,2511-2517.

108. B.M. Voelker, B. Sulzberger (1996). Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ. Sci. Technol, 30,1106-1114.

109. B.M. Voelker, F.M.N. Morel, B. Sulzberger (1997). Iron redox cycling in surface waters: Effects of humic substances and light. Environ. Sci. Technol, 31,1004-1011.

110. M. Kulovaara, P. Backlund (1993). Effects of simulated sunlight on aquatic humic matter. Vatten, 49,100-103.

111. K. Salonen, A.Vahatalo (1994). Photochemical mineralization of dissolved organic matter in lake Skjervatjern. Environ. Int., 20, 307-312.

112. R.M.W. Amon, R. Benner (1996). Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geo-chim. Cosmochim. Acta, 60,1783-1792.

113. W. Graneli, M. Lindell, L. Tranvikt (1996). Photooxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr., 41,698-706.

114. A.V. Vahatalo, M.S. Salonen, P. Taalas, K. Salonen (2001). Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake. Limnol Oceanogr., 45, 664-676.

115. S.C. Johannessen, W.L. Miller. Quantum yield for the photochemical production of dissolved inorganic carbon in the ocean. Mar. Chem., in press.

116. B. Reitner, G.J. Herndl, A. Herzig (1997). Role of ultraviolet-B radiation on photochemical and microbial oxygen consumption in a humic rich shallow lake. Limnol. Oceanogr., 42, 950-960.

117. B.C. Faust, R.G. Zepp (1993). Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol., 21,2517-2522.

118. S.C.H. Johannessen (2000). A photochemical sink for dissolved organic carbon in the ocean (Ph.D. Thesis, p. 175). Dalhousie University.

119. C.L. Osburn, D.P. Morris, K.A. Thorn, R.E. Moeller (2001). Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Bi-ogeochemistry, 54, 251-278.

120. A.M. Anesio, L.J. Tranvik, W. Graneli (1999). Production of inorganic carbon from aquatic macrophytes by solar radiation. Ecology, 80, 1852-1859.

121. DJ. Kieber, J. McDaniel, K. Mopper (1989). Photochemical source of biological substrates in sea water: implications for carbon cycling. Nature, 341, 637-639.

122. J.J. Lindell, W. Granéli, L.J. Tranvik (1996). Effects of sunlight on bacterial growth in lakes of different humic content. Aquat. Microb. Ecol., 11,138-141.

123. R.G. Wetzel, P.G. Hatcher, T.S. Bianchi (1995). Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr., 40,1369-1380.

124. G. Mullerniklas, A. Heissenberger, S. Puskaric, G.J. Herndl (1995). Ultraviolet-B radiation and bacterial metabolism in coastal waters. Aquat. Microb. Ecol., 9, 111-116.

125. W.L. Miller, M.A. Moran (1997). Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol. Oceanogr., 42,1317-1324.

126. G.J. Herndl, A. Brugger, S. Hager, E. Kaiser, I. Obernosterer, B. Reitner, D. Slezak (1997). Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter. Plant Ecol, 128,42-51.

127. E. Kaiser, G.J. Herndl (1997). Rapid recovery of marine bacterioplankton activity after inhibition by UV radiation in coastal waters. Appl. Environ. Microbiol., 63, 4026-4031.

128. I. Obernosterer, G.J. Herndl (2000). Differences in the optical and biological reactivity of the humic and nonhumic dissolved organic carbon component in two contrasting coastal marine environments. Limnol. Oceanogr., 45,1120-1129.

129. S. Bertilsson, L.J. Tranvik (1998). Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol. Oceanogr., 43, 885-895.

130. S. Bertilsson, L.J. Tranvik (2000). Photochemical transformation of dissolved organic matter in lakes. Limnol. Oceanogr., 45, 753-762.

131. I. Obernosterer, B. Reitner, G.J. Herndl (1999). Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnol. Oceanogr., 44, 1645-1654.

132. R. Benner, B. Biddanda (1998). Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnol. Oceanogr., 43, 1373-1378.

133. S. Ziegler, R. Benner (2000). Effects of solar radiation on dissolved organic matter in a subtropical seagrass meadow. Limnol. Oceanogr., 45, 257-266.

134. T. Naganuma, T. Konishi, T. Inoue, T. Nakane, S. Sukizaki (1996). Photodegrada-

tion or photoalteration? Microbial assay of dissolved organic matter. Mar. Ecol. Prog. Ser., 135, 309-310.

135. L.J. Tranvik, S. Kokalj (1998). Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. Aquat. Microb. Ecol., 14, 301-307.

136. D.N. Thomas, R.J. Lara (1995). Photodegradation of algal derived dissolved organic carbon. Mar. Ecol. Prog. Ser., 116, 309-310.

137. A.M. Anesio, C.M.T. Denward, L.J. Tranvik, W. Graneli (1999). Decreased bacterial growth on vascular plant detritus due to photochemical modification. Aquat. Microb. Ecol., 17,159-165.

138. J.J. Lindell, W. Granéli, L.J. Tranvik (1995). Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol. Oceanogr., 40, 195-199.

139. R.G. Zepp, D.M. Cline (1977). Rates of direct photolysis in the aquatic environment. Environ. Sci. Technoi, 11, 359-366.

140. R.G. Zepp (1982). Experimental approaches to environmental photochemistry. In: O. Hutzinger (Ed.), The Handbook of Environmental Chemistry (pp. 19-41). SpringerVerlag, Berlin Heidelberg.

141. D. Preiswerk, R.G. Najjar (2000). A global, open-ocean model of carbonyl sulfide and its air-sea flux. Global Biogeochem. Cycles, 14, 585-598.

142. P.M. Williams, E.R.M. Druffel (1987). Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330,246-248.

143. P.M. Williams, L.I. Gordon (1970). Carbon-13: carbon-12 ratios in dissolved and particulate organic matter in the sea. Deep-Sea Res., 17,19-27.

144. P.A. Raymond, J.E. Bauer (2001). DOC cycling in a temperate estuary: A mass balance approach using 14C and 13C isotopes. Limnol. Oceanogr., 46, 655-667.

145. S. Opsahl, R. Benner (1997). Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature, 386, 480-482.

146. R. Benner, S. Opsahl (2001). Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi River plume. Org. Geochem., 32, 597-611.

147. A. Kumar, R.P. Sinha, D.-P. Háder (1996). Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola. J. Plant Physiol., 148, 86-91.

148. J.A. Fuhrman, D.G. Capone (2001). Nifty nanoplankton. Nature, 412, 593-594.

149. J.P. Zehr, J.B. Waterbury, P.J. Turner, J.P. Montoya, E. Omoregie, G.F. Steward, A. Hansen, N.-D.M. Karl (2001). Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature, 412, 635-638.

150. I. Berman-Frank, J.T. Cullen, Y. Shaked, R.M. Sherrell, P.G. Falkowski (2001). Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr., 46,1249-1260.

151. J.M. Lenes, B.P. Darrow, C. Cattrall, C.A. Heil, M. Callahan, G.A. Vargo, R.H. Byrne, J.M. Prospero, D.E. Bates, K.A. Fanning, J.J. Walsh (2001). Iron fertilization and the Trichodesmium response on the West Florida shelf. Limnol. Oceanogr., 46, 1261-1277.

152. J. Wu, E. Boyle, W. Sunda, S.-L-S Wen (2001). Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science, 293, 847-5-849.

153. W.G. Sunda (1994). The influence of nonliving organic matter on the availability and cycling of plant nutrients in seawater. In: R.G. Zepp, C. Sonntag (Eds), Role of Non Living Organic Matter in the Earth's Carbon Cycle (pp. 191-207). Wiley, New York.

154. K.L. Bushaw, R.G. Zepp, M.A. Tarr, D. Schulz-Jander, R.A. Bourbonniere, R.E.

Hodson, W.L. Miller, D.A. Bronk, M.A. Moran (1996). Photochemical release of biologically available nitrogen from dissolved organic matter. Nature, 381,404-407.

155. K.L. Bushaw-Newton, M.A. Moran (1999). Photochemical formation of biologically-available nitrogen from dissolved humic substances in coastal marine systems. Aquat. Microb. EcoL, 18,185-292.

156. D.J. Koopmans, D.A. Bronk. Photochemical production of inorganic nitrogen from dissolved organic nitrogen in waters of two estuaries and adjacent surficial groundwaters. Aquat. Microb. EcoL, in press.

157. W.S. Gardner, J.F. Cavaletto, H.A. Bootsma, P.J. Lavrentyev, F. Troncone (1998). Nitrogen cycling rates and light effects in tropical Lake Maracaibo, Venezuela. Limnol. Oceanogr., 43, 1814-1825.

158. W.W. Wang, M.A. Tarr, T.S. Bianchi, E. Engelhaupt (2000). Ammonium photoproduction from aquatic humic and colloidal matter. Aquat. Geochem., 6, 275-292.

159. R.J. Kieber, A. Li, P.J. Seaton (1999). Production of nitrite from the photodegradation of dissolved organic matter in natural waters. Environ. Sci. Technol., 33, 993-998.

160. N.O.G. Jorgensen, L. Tranvik, H. Edling, W. Granéli, M. Lindell. (1998). Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake water. FEMS Microbiol. EcoL, 25, 217-227.

161. IPCC (1997). IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel for Climate Change, Paris, France.

162. J.J. Jankowski, D.J. Kieber, K. Mopper (1999). Nitrate and nitrite actinometers. Photochem. Photobiol., 70, 319-328.

163. R.G. Zepp, J. Hoigné, H. Bader (1987). Nitrate-induced photooxidation of trace organic chemicals in water. Environ. Sci. Technol., 21,443-450.

164. O.C. Zafiriou, M.B. True (1979). Nitrate photolysis in seawater by sunlight. Mar. Chem., 8, 336-42.

165. P.P. Vaughan, N.V. Blough (1998). Photochemical formation of hydroxyl radical by constituents of natural waters. Environ. Sci. Technol., 32, 2947-2953.

166. O.C. Zafiriou, R. Bonneau (1987). Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water. Photochem. Photobiol., 45, 723-727.

167. O.C. Zafiriou, M. McFarland (1981). Nitric oxide from nitrite photolysis in the Central Equatorial Pacific. J. Geophys. Res., 86, 3173-3182.

168. E. Micinski, L.A. Ball, O.C. Zafiriou (1993). Photochemical oxygen activation: Superoxide radical detection and production rates in the Eastern Caribbean. J. Geophys. Res., 98, 2299-2306.

169. R.J. Ferek, R.B. Chatfield, M.O. Andreae (1986). Vertical distribution of dimethyl sulfide in the marine atmosphere. Nature, 320, 514-516.

170. M.O. Andreae (1986). The ocean as a source of atmospheric sulfur compounds. In: P. Buat-Menard (Ed.), The Role of Air-Sea Exchange in Geochemical Cycling (pp. 331-362). D. Reidel, Dordrecht.

171. R.J. Charlson, J.E. Lovelock, M.O. Andreae, S.G. Warren (1987). Oceanic phytop-lankton, atmospheric sulfur, cloud albedo and climate. Nature, 326, 655-661.

172. F. Yin, D. Grosjean, J.H. Seinfeld (1990). Photooxidation of dimethyl sulfide and dimethyl disulfide: Mechanism development. J. Atmos. Chem., 11, 309-364.

173. T.S. Bates, B.K. Lamb, A. Guenther, J. Dignon, R.E. Stoiber (1992). Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem., 14, 315-337.

174. A.J. Kettle, M.O. Andreae et. al. (1999). A global database of sea surface dimethyl-sulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude and month. Global Biogeochem. Cycles, 13, 399-444.

175. R. Boers, P. Ayers, J.L. Gras (1994). Coherence between seasonal variation in satellite-derived cloud optical depth and boundary layer CCN concentrations at a mid-latitude Southern Hemisphere station. Tellus Ser. B. Chem. Phys. Meteorol, 46, 123-131.

176. M.D. Keller, W.K. Bellows, R.R.L. Guillard (1988). A survey of dimethyl sulfide production in 12 classes of marine phytoplankton. In: E. Saltzman, W. Cooper (Eds), Biogenic Sulfur in the Environment, (pp. 167-182). American Chemical Society, Washington, D.C.

177. M.A.J. Curran, G.B. Jones (2000). Dimethyl sulfide in the Southern Ocean: Seasonality and flux. J. Geophys. Res., 105,20451-20459.

178. D.J. Erickson, R.G. Zepp, E. Atlas (2000). Ozone depletion and the air-sea exchange of greenhouse and chemically reactive trace gases. Chemosphere-Global Change Sci., 2,137-149.

179. J.W. Dacey, S.G. Wakeham (1986). Oceanic dimethylsulfide: Production during zooplankton grazing on phytoplankton. Science, 233,1314-1316.

180. R.P. Kiene (1999). Sulphur in the mix. Nature, 402, 363-365.

181. R. Simo, C. Pedros-Alio (1999). Role of vertical mixing in controlling the oceanic production of dimethyl sulfide. Nature, 402, 396-398.

182. D.J. Kieber, J. Jiao, R.P. Kiene, T.S. Bates (1996). Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. J. Geophys. Res., 101, 3715-3722.

183. D.A. Toole, D.J. Kieber, R.P. Kiene, D.A. Siegel (2002). Quantum yield of dimethyl sulfide photo-oxidation in the Sargasso Sea. Eos Trans. AG A, 83, OS 184.

184. P.J. Crutzen (1976). The possible importance of COS for the sulfate layer of the stratosphere. Geophys. Res. Lett., 3, 73-76.

185. M. Chin, D.D. Davis (1995). A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosols. J. Geophys. Res., 100, 8993-9005.

186. M.O. Andreae, R.J. Ferek (1992). Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere. Global Biogeochem. Cycles, 6,175-183.

187. R. Zepp, T.V. Callaghan, D. Erikson (1994). Effects of increased solar untraviolet rdiation on biogeochemical cycles. In: J. an der Leun, M. Tevini, A. Teramura (Eds), Environmental Effects of Ozone Depletion, (pp. 79-93). United Nations Environment Programme Publication, Nairobi, Kenya.

188. G. Uher, M.O. Andreae (1997). Photochemical production of carbonyl sulfide in North Sea water: A process study. Limnol. Oceanogr., 42,432-442.

189. P.S. Weiss, S.S. Andrews, J.E. Johnson, O.C. Zafiriou (1995). Photoproduction of carbonyl sulfide in South Pacific Ocean waters as a function of irradiation wavelength. Geophys. Res. Lett., 22, 215-218.

190. P.S. Weiss, J.E. Johnson, R.H. Gammon, T.S. Bates (1995). Re-evaluation of the open ocean source of carbonyl sulfide to the atmosphere. J. Geophys. Res., 100, 23083-23092.

191. W.H. Pos, D.H. Riemer, R.G. Zika (1998). Carbonyl sulfide (OCS) and carbon monoxide (CO) in natural waters: Evidence of a coupled production pathway. Mar. Chem., 62, 89-101.

192. V.S. Ulshofer, M.O. Andreae (1998). Carbonyl sulfide (COS) in the surface ocean and the atmospheric COS budget. Aquat. Geochem., 3,283-303.

193. R.G. Zepp, M.O. Andreae (1994). Factors affecting the photochemical formation of carbonyl sulfide in seawater. Geophys. Res. Lett., 21, 2812-2816.

194. R. Al-Farawati, C.M.G. van den Berg (2001). Thiols in coastal waters of the Western

North Sea and English Channel. Environ. Sei. Technoi, 35,1902-1911.

195. S. Elliot, E. Lu, F.S. Rowland (1989). Rates and mechanisms for hydrolysis of carbonyl sulfide in natural waters. Environ. Sei. Technoi., 23,458-461.

196. W.G. Sunda, D.J. Kieber (1994). Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature, 367, 62-64.

197. S.W. Chisholm (2000). Stirring times in the Southern Ocean. Nature, 407, 685-687.

198. K. Barbeau, J.W. Moffett (2000). Laboratory and field studies of colloidal iron oxide dissolution as mediated by phagotrophy and photolysis. Limnol. Oceanogr., 45, 827-835.

199. W.G. Sunda, S.A. Huntsman (1988). Effect of sunlight on redox cycles of manganese in the southwestern Sargasso sea. Deep-Sea Res., 35, 1297-1317.

200. M.L. Wells, N.M. Price, K.W. Bruland (1995). Iron chemistry in seawater and its relationship to phytoplankton: A workshop report. Mar. Chem., 48,157-182.

201. N.M. Price, F.M.M. Morel (1998). Biological cycling of iron in the ocean. Met. Ions Biol. Syst., 35,1-36.

202. E.L. Rue, K.W. Bruland (1995). Complexation of Fe(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibra-tion/adsorptive cathode stripping voltammetric method. Mar. Chem., 50,117-138.

203. D.M. McKnight, B.A. Kimball, K.E. Bencala (1988). Iron photoreduction and oxidation in an acidic mountain stream. Science, 240, 637-641.

204. B. Sulzberger, J.L. Schnoor, R. Giovanall, J.G. Hering, J. Zobrist (1990). Bi-ogeochemistry of iron in an acidic lake. Aquat. Sei., 52, 57-74.

205. M.L. Wells, L.M. Mayer (1991). The photoconversion of colloidal iron hydroxides in seawater. Deep-Sea Res., 38,1379-1395.

206. K. Barbeau, E.L. Rue, K.W. Bruland, A. Butler (2001). Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature, 413, 409-413.

207. L. Emmenegger, R. Schwarzenbach, L. Sigg, B. Sulzberger (2000). Light-induced redox cycling of iron in circumneutral lakes. Limnol. Oceanogr., 46,49-61.

208. W.L. Miller, D.W. King, J. Lin, D.R. Kester (1995). Photochemical redox cycling of iron in coastal seawater. Mar. Chem., 50, 63-77.

209. B.M. Voelker, D.L. Sedlak (1995). Iron reduction by photoproduced superoxide in seawater. Mar. Chem., 50,93-102.

210. J.W. Moffett, R.G. Zika (1983). Oxidation kinetics of copper(I) in seawater: Implications for its existence in the marine environment. Mar. Chem., 13, 235-251.

211. J.W. Moffett, R.G. Zika (1987). Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ. Sei. Technoi, 21, 801-810.

212. P.L. Croot, J.W. Moffett, L.E. Brand (2000). Photoproduction of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnol Oceanogr., 45, 619-627.

213. M.G. Kogut, B.M. Voelker (2001). Strong copper-binding behavior of terrestrial humic substancres in seawater. Environ. Sei. Technoi, 35,1149-1156.

214. V. Balzani, V. Carrassiti (1970). Photochemistry of Coordination Compounds. Academic Press, London.

215. G. Ferraudi, S. Muralidharan (1981). Photochemical properties of copper complexes. Coord. Chem. Rev., 36, 45-88.

216. K. Hayase, R.G. Zepp (1991). Photolysis of copper(II)-amino acid complexes in water. Environ. Sei. Technoi, 25, 1273-1279.

217. S.H.R. Davies, J.J. Morgan (1989). Manganese(II) oxidation kinetics on oxide surfaces. J. Colloid Interface Sei., 129, 63-77.

218. C. Lume-Pereira, S. Baral, A. Henglein, E. Janata (1985). Chemistry of colloidal manganese dioxide. J. Phys. Chem., 89, 5772-5778.

219. S. Baral, C. Lume-Pereira, E. Janata, A. Henglein (1985). Chemistry of colloidal manganese dioxide. 1. Reaction with O and H202 (pulse radiolysis and stop flow studies). J. Phys. Chem., 89, 5779-5783.

220. A. Henglein (1989). Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 89,4342-4347.

221. O.C. Zafiriou, B.M. Voelker, D.L. Sedlak (1998). Chemistry of the superoxide ion (02~) in seawater: Reactions with inorganic copper complexes. J. Phys. Chem., 102, 5693-5700.

222. B.M. Voelker, D.L. Sedlak, O.C. Zafiriou (2000). Chemistry of superoxide radicals (02~) in seawater: Reactions with organic Cu complexes. Environ. Sei. Technol., 34, 1036-1042.

223. K.S. Johnson, K.H. Coale, V.A. Elrod, N.W. Tindale (1994). Iron photochemistry in the equatorial Pacific. Mar. Chem., 46, 319-334.

224. T D. Waite, F.M.M. Morel (1984). Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sei. Technol., 18, 860-868.

225. R.J. Kieber, K. Williams, J.D. Willey, S. Skrabal, G.B. Avery (2001). Iron speciation in coastal rainwater: Concentration and deposition to seawater. Mar. Chem., 73, 83-95.

226. T.D. Waite, I.C. Wrigley, R. Szymczak (1988). Photo-assisted dissolution of a colloidal manganese oxide in the presence of fulvic acid. Environ. Sei. Technol, 22, 778-7863.

227. R.G. Zepp, B.C. Faust, J. Hoigne (1992). Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Envir. Sei. Technol, 26, 313-321.

228. Y. Zuo, J. Hoigne (1992). Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sei. Technol, 26,1014-1022.

229. A.T. Stone (1987). Reductive dissolution of manganese(III) and manganese(IV) oxides by substituted phenols. Environ. Sei. Technol, 21, 979-988.

230. W.G. Sunda, S.A. Huntsman, G.R. Harvey (1983). Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature, 301, 234-236.

231. D.J. Bertino, R.G. Zepp (1991). Effects of solar radiation on manganese oxide reactions with selected organic compounds. Environ. Sei. Technol, 25,1267-1273.

232. W.G. Sunda, S.A. Huntsman (1990). Effects of sunlight and anthropogenic alterations in atmospheric solar attenuation on manganese redox cycles in surface seawater. In: N.V. Blough and R.G. Zepp (Eds), Effects of Solar Ultraviolet Radiation on Biogeochemical Dynamics in Aquatic Environments (pp, 104-107). Technical Report No. WHOI-90-09. Woods Hole Oceanographic Institution. Woods Hole, MA.

233. G.P. Klinkhammer, C.S. Chin, C. Wilson, M.D. Rudnicki, C.R. German (1997). Distributions of dissolved manganese and fluorescent dissolved organic matter in the Columbia River estuary and plume as determined by in-situ measurement. Mar. Chem., 56,1-14.

234. T. Jickells, T. Church, A. Veron, R. Arimoto (1994). Atmospheric inputs of manganese and aluminum to the Sargasso Sea and their relation to surface-water concentrations. Mar. Chem., 46, 283-292.

235. S. Madronich, R.L. McKenzie, L.O. Björn, M.M. Caldwell (1998). Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photochem. Photobiol. B: Biol., 46, 1-27.

Was this article helpful?

0 0

Post a comment