Info

a Developed by United States Geological Survey (USGS) and United States Department of Mines in 1976 and commonly called the ''McKelvey Box,'' after Vincent McKelvey, who was the USGS Director.

a Developed by United States Geological Survey (USGS) and United States Department of Mines in 1976 and commonly called the ''McKelvey Box,'' after Vincent McKelvey, who was the USGS Director.

1150 sites throughout the ocean to ''explore the structure and history of the Earth as it is recorded in the basement rock and overlying sediments accumulated on the seafloor.'' Since 1972, more than 1000 marine sediment cores have been collected at more than 80 sites around Antarctica (Figs. 6.4 and 11.6). Many of these scientific drilling operations have been conducted in the ocean from sea-ice platforms as well as in coastal terrestrial environments under the auspices of the Scientific Committee on Antarctic Research (SCAR) through its Group of Specialists on Cenozoic Paleoenvironments of the Southern High Latitudes (Fig. 6.5).

Since 1978, more than 150,000 kilometers of multichannel seismic reflection data (Fig. 6.4) also have been collected around Antarctica by more than 13 nations (Fig. 11.7, Table 11.3). The institutions that are generating seismic profiles of the sea floor around Antarctica range from universities and national geologic survey programs to national oil corporations. Currently, all of these seismic data from the different institutions are being compiled by the SCAR through the Antarctic Offshore Stratigraphy Project (ANTOSTRAT), which began in 1988 (Table 11.3).

The broad objective of ANTOSTRAT, which includes archiving data in an international Antarctic Seismic Data Library System, is to openly share information that is essential for interpreting the history of Antarctic ice-sheet fluctuations in relation to global climate dynamics. Beyond scientific activities, which use Antarctica as a ''natural laboratory'' for studying the Earth system, ANTOSTRAT also provides a mechanism for sharing data and diffusing the economic considerations of proprietary information (Fig. 11.8).

Generally, mineral resources are nonliving and nonrenewable. One mineral resource exception would be icebergs, which are continuously calving from ice shelves, ice tongues, and glaciers in the polar regions. To discuss the feasibility of

0 0

Post a comment