Strategies For In Situ Agrobiodiversity Conservation By Indigenous Communities

Over the years, we have spent a great deal of time working with subsistence farmers in Asia, Latin America, and the American South (Nazarea-Sandoval and Rhoades, 1994). We have studied these "native curators" intensively as anthropologists, worked with farmers as members of interdisciplinary teams at International Rice Research Institute (IRRI) and International Potato Center (CIP), and — more recently — as anthropologists attempting to document and revive landrace use in the southern U.S. through support of traditional means of use and exchange of heirloom varieties. Whether Andean farmers, Filipino rice cultivators and sweet potato growers, or Appalachian gardeners, they share common characteristics. Universally, regions of rich biodiversity exist along the margins of their economic and political worlds. Landrace cultivators are typically found in more remote mountains, islands, rain forests, or desert agroecosystems which are momentarily insulated from the dominant forces of the outside world economy (Dasmann, 1991). Communities — and households within communities — with a propensity to maintain diverse systems tend to be disenfranchised from the dominant order surrounding them. Even the individuals who tend to be key native curators are marginal within their own households. Thus, marginality at various scale levels is a key common designator of landrace in situ curation.

Agroecologists, along with ethnoecologists who focus on the cognitive underpinnings of human-biological system interactions, have pioneered studies which show that farmers pursue various strategies in using biodiversity as a way to meet their basic physical, social, and spiritual needs (Hecht, 1987; Oldfield and Alcorn, 1991; Nazarea-Sandoval, 1995). This body of research points to fundamental differences between informal and formal models of genetic resource/biodiversity management (Altieri, 1987; Altieri and Merrick, 1988). First, traditional producers/communities use a different set of selection and evaluation criteria for germplasm management than modern breeding or commercial seed programs. Second, their methods of experimentation and testing are fundamentally different, although there are some points of common interest. Third, the strategies which preserve biodiversity are often embedded in community action which channels and encourages individual households to act in such a way as to foster biodiversity.

Multidimensional Criteria for Selection and Maintenance of Landraces

Scientists find the tremendous diversity of landraces in marginal agroecosystems useful and valuable in developing new and better varieties. To the practicing subsistence farmer, however, it is strange — probably inconceivable — that one would be so foolish as to risk this diversity with the narrow selection of just a few varieties and species. In maintaining a wide range of varieties and species, traditional farmers use multidimensional decision-making criteria which holistically involve ecology, the complete food system from seed handling to consumption, and cultural aspects such as culinary qualities, ritual, and cosmology. This complex decision-making process may often be poorly understood by the formal scientific sector which tends to be largely market oriented.

Farmers opt for an adaptive strategy of using biodiversity in such a way that it spreads production risk and labor scheduling across the landscape. In the Cusco Valley of Peru, for example, we found farmers who plant up to 50 different varieties as well as several species of potatoes at different time intervals in 20 to 30 scattered fields characterized by different altitude, soil types, and orientations to the sun. This principle of diversity to spread risk is simply an Andean version of "don't put all your eggs in one basket." This dispersion pattern reduces the risk that one disease outbreak or an unpredicted frost will devastate an entire crop. Simultaneously, by using different varieties a continuous flow of production through time and space can be realized so that different markets, household needs, or labor supplies can be accommodated. Interspecific and intraspecific variation is also used for agronomic control of weeds and pests, microclimatic variation through shading, as well as a buffer against climatic and pest damage. Andean potato farmers' strategies are based on a long-term, detailed knowledge of specific plant-environment interaction. Any variety is tested against several seasons of variable frosts and rainfall as well as performance in different soils.

In the Philippines, market forces are as salient as ecological factors in farmers' decision-making frameworks, and the cognizance of instability and unpredictability of both leads to constant experimentation, information and germplasm exchange, and hedging. A sweet potato farmer in Bukidnon resists the pull toward monoculture because of his perception that environmental flux and economic trends are beyond his control. According to him,

I ask for different planting materials from our neighbors but I don't mix them up. I plant at least five different varieties of sweet potatoes at any one time to experiment from which ones I get the most benefit. At different seasons, we should plant different varieties because we never know which ones would be most productive (Nazarea, 1998b).

Some rice farmers, integrated as they are to the market system and credit infrastructure, still plant their favored varieties in the middle of clumps or at the borders of agriculture extension and credit-backed varieties, thus managing to have their credit, and eat, too.

In localized agroecosystems, household production units are also direct consumption units; thus, they have a vested interest in carefully linking production and consumption in a way not found in commercial systems where different activities are typically carried out by separate groups. In subsistence systems, the household unit manages all stages of the food system, including seed selection, production, storage, processing, and marketing. Even when there is a need for interhousehold exchange of genetic material, the linkages are generally along kin-based and community networks. There are no "formal" seed certification systems and the people who select cultivars are the same ones who grow, process, store, eat, and exchange/sell them. When the consumption unit and the production unit are coterminus, a more-refined and more-detailed set of criteria is used compared with when these two functions are separated.

In the Andes, an interdisciplinary research team from the CIP discovered some 39 criteria that farmers consider in their evaluation of varieties (Prain et al., 1992). This led to the conclusion that farmers do not seek an ideal variety. Instead, farmers seek to manage an ideal range of varieties that address their food system requirements related to cash and subsistence needs (Prain et al., 1992). These requirements were highly local and specific to household needs. In one of the research sites, for example, farmers would grow "improved" varieties for subsistence while in another village farmers cultivated folk varieties for the marketplace (Bidegaray, 1988). These unexpected uses were tied to certain local realities which only the farmers fully appreciated. In one case, there was a shortage of land and wage opportunities so they used their land to produce high-yielding varieties for food, while in the other case, a nearby market provided higher prices for the valued native varieties (Brush, 1992; Prain et al., 1992).

Another aspect of diversity maintenance involves postproduction activities (storage, seed selection, processing, and cooking). Women, who are often in charge of these nonfield activities, handle materials in such as way as to increase aspects of diversity further. Shapes and colors proliferate in landrace material since these are used as perceptual signals for sorting and identification. Most published research on potato selection makes reference to the significance of differences in color, shape, texture, and taste. Selection for "storability" or "culinary quality" occurs in the hands of women who are acknowledged by the men to have superior knowledge of the crop. Andean farmers are connoisseurs of potatoes which they evaluate with a wide range of cooking descriptors as well as taste labels such as "flouriness," "stickiness," "wateriness," and so on. Native potatoes are universally recognized as superior to improved varieties in terms of culinary quality.

Among Philippine sweet potato farmers, characteristics such as cooking quality, aesthetic appeal, storability, and propensity of mixing well with other cultivars are valued as much as yield or disease resistance by households surviving in the marginal zones. Morphological, gastronomic, life habit attributes, familiarity gradients, and functional criteria were used in distinguishing and prioritizing among varieties, and were far from being mutually exclusive. Interestingly, local criteria for evaluation of sweet potato varieties tend to be fuzzy or to trail off into gray areas as to which properties or traits are positive or preferred and which ones are negative or not preferred. For example, people would say they prefer sweet varieties but bland ones are good to eat with fish and are a good substitute for rice during lean times, or that newer varieties are desirable because they produce bigger roots but older varieties produce tastier though smaller roots. The result of this "fuzziness" is that it is impossible to construct a hierarchy of sweetpotato varieties from the most desirable to the least, and, as a consequence, people retain different varieties in their farms and home gardens.

Another dimension of genetic resource diversity in traditional societies often overlooked by scientists and planners from more "utilitarian" urban-dominated societies is the interconnectedness between plants and cosmology, that part of culture which deals with perception, ritual, religion, and worldview. Given the intimacy of daily contact between cultivators and their biological environment, especially plants and animals, a cultural interplay is not uncommon during which the domesticates are assigned significant symbolic roles in the lives of the people themselves (Zimmerer, 1991). Therefore, plants are more than just food. Plants are also ascribed gender, spiritual qualities, mystical powers, and important religious roles in the lives of the people (Down to Earth, 1994). People of many cultures believe they originated from certain sacred plants (e.g., Mayan creation story and maize). In the case of southwestern Native American groups, the diversity of maize types (and colors) reflects group relationship, ethnic origins, cardinal directions, and a reverence for diversity (Ford, 1984; Sekaquaptewa and Black, 1986).

Evidence from many cultures around the world points to a playfulness and appreciation of landrace diversity as expressed not only through color and shape, but also reflected in complex folk taxonomies and cultural identity related to lan-draces. In the Andes, certain potato varieties are valued more for their symbolic role in gift exchange and honoring guests at ritualized meals than for any agronomic and economic values. Brush (1977) reports that the most highly prized varieties are often the most delicate and least productive (see also Carter and Mamani, 1982). One study from Bolivia pointed to the importance of potato diversity to the cultural identity of the Aymara (Johnsson, 1986). In some parts of the Andes, the most prestigious meal one can serve is made up of native cultivars, especially of potato. Although such beliefs are frequently disregarded by scientists as superfluous, the ethnographic record shows that such beliefs play a major shaping role in creating variability among cultures (Zimmerer, 1991).

Try as we might, as scientists, to coax the fan of strategies into a logical, universal framework, none seems to provide greater exploratory power than the "framework" of expediency — of hedging, making do, and muddling through. By this, we mean the development and maintenance of plant genetic diversity in local agroecosystems based on day-to-day pragmatic concerns and the natural inertia that preserves diversity due to the existence of a multiplicity of local demands and preferences but cannot be fully satisfied by any one "ideal" or "best" variety. The decision-making process, in other words, is characterized by conflicting demands, complementation, and compromise, resulting in behavioral outcomes that augur well for the maintenance of a wide variety of cultivars.

Comparison of Scientific/Formal Approaches to Biodiversity Maintenance

Contrasting the approaches of traditional farmers and scientists in methods of varietal selection can clarify the reasons plant-breeding programs often fail to reach farmers with new genetic materials (Berg et al., 1991). Since traditional farmers deal with holistic systems and multiple selection criteria they do not normally think in terms of formal dichotomies like "improved" vs. "local" varieties. Farmers select varieties that perform well in certain areas (e.g., agronomic, yield, marketability, culinary) important to the context of their localized food system. Although farmers do not use the agronomists' multiple replications side by side, the folk selection process is far from haphazard. Like breeders, traditional farmers have a systematic way of seeking and integrating materials into their living, working informal gene banks. Farmers are fanatic seekers of new varieties, and they will eagerly seek materials wherever they can be found (e.g., formal seed programs, neighbors, markets). Once a new variety is obtained, it is generally planted on a small scale in a kitchen garden or in a single row along the margins of a regular field. If the variety proves itself, farmers amplify their production as the amount of seed allows. The variety is observed and evaluated for multiple qualities relevant to the local food system (see Table 1). All the while, they continue to maintain their own "germplasm" bank which is constantly being replenished and experimentally culled (Rhoades, 1989a).

Many farmers are avid experimenters by nature (Richards, 1985; Rhoades and Bebbington, 1995). The "atmosphere of experimentation" which characterized the neolithic farmer since the earlier stages of cultivation is one of the foundations upon which agriculture advances (Braidwood, 1967), and farmers are as creatively involved in this ongoing process as are scientists. A key difference, however, between

Table 1 Breeders' and Farmers' Cultivar Selection Methods

Was this article helpful?

0 0

Post a comment