References

Ahring, B.K., Schmidt, J.E., Winther-Nielsen, M., Macario, A.J.L., & de Macario, E.C. (1993). Effect of medium composition and sludge removal on the production, composition and architecture of thermophilic (55°C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol, 59, 2538-2545.

Alphenaar, P.A., Visser, A., & Lettinga, G. (1993). The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high-sulphate content. Bioresour. Technol., 43, 249-258.

Arcand, Y., Guitot, S.R., Desrochers, M., & Chavarie, C. (1994). Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. Chem. Eng. J. Biochem. Eng. J., 56, 23-35.

Bae, J.W., Rhee, S.K., Hyun, S.H., Kim, I.S., & Lee, S.T. (2000). Layered structure of granules in upflow anaerobic sludge blanket reactor gives microbial populations resistance to metal ions. Biotechnol. Lett., 22, 1935-1940.

Ben-Jacob, E., Cohen, I., & Levine, H. (2000). Cooperative self-organization of microorganisms. Adv. Phys., 49, 395-554.

Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirok, A., & Tamas, V. (1991). Generic modeling of cooperative growth patterns in bacterial colonies.

Bochem, H.P., Schoberth, S.M., Sprey, B., & Wengler, P. (1982). Thermophilic biomethanation of acetic acid: morphology and ultrastructure of a granular consortium. Canad. J. Microbiol., 28, 500-510.

Cammarota, M.C., & Sant'Anna Jr., G.L. (1998). Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation. Biotechnol. Lett., 20, 1-4.

Chen, J., & Lun S.Y. (1993). Study on mechanism of anaerobic sludge granulation in UASB reactors. Water Sci. Technol., 28, 171-178.

Daffonchio, D., Thavessri, J., & Verstraete, W. (1995). Contact angle measurement and cell hydrohpobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl. Environ. Microbiol., 61, 3676-3680.

Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., & Greenberg, E.P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295-298.

de Zeeuw, W.J. (1984). Acclimatization of anaerobic sludge for UASB reactor start-up. Ph.D. Thesis. Agricultural University Wageningen, The Netherlands.

de Zeeuw, W.J. (1988). Granular sludge in UASB-reactors. Granular Anaerobic Sludge: Microbiology and Technology (eds. Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C., & Hulshoff Pol, L.W.), Wageningen, The Netherlands, 132-145.

Dubourgier, H.C., Prensier, G., & Albagnac, G. (1987). Structure and microbial activities of granular anaerobic sludge. Granular Anaerobic Sludge: Microbiology and Technology (eds. Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C., & Hulshoff Pol, L.W.), Pudoc Wageningen, The Netherlands, 18-33.

El-Mamouni, R., Leduc, R., & Guiot, S.R. (1998). Influence of synthetic and natural polymers on the anaerobic granulation process. Water Sci. Technol., 38, 341-347.

Fang, H.H.P. (2000). Microbial distribution in UASB granules and its resulting effects. Water Sci. Technol., 42, 201-208.

Fang, H.H.P., & Chui, H.K. (1993). Maximum COD loading capacity in UASB reactors at 37°C. J. Environ. Eng., 119, 103-119.

Fang, H.H.P., Chui, H.K., & Li, Y.Y. (1995). Effect of degradation kinetics on the microstructure of anaerobic biogranules. Water Sci. Technol., 32, 165-172.

Forster, C.F., & Lewin, D.C. (1972). Polymer interaction at activated sludge surfaces. Effl. Water. Treat. J., 12, 520-525.

Grootaerd, H., Liessens, B., & Verstraete, W. (1997). Effects of directly soluble and fibrous rapidly acidifying chemical oxygen demand and reactor liquid surface tension on granulation and sludge-bed stability in upflow anaerobic sludge blanket reactors. Appl. Microbiol. Biotechnol., 48, 304-310.

Grotenhuis, J.T.C., van Lier, J.B., Plugge, C.M., Stams, A.J.M., & Zehnder, A.J.B. (1991). Effect of ethylene glycol-bis(ß-aminoethylether)-N, N-tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge. Appl. Microbiol. Biotechnol., 36, 109-114.

Guiot, S.R., Gorur, S.S., Bourque, D., & Samson, R. (1988). Metal effect on microbial aggregation during upflow anaerobic sludge bed-filter (UBF) reactor start-up. Granular Anaerobic Sludge: Microbiology and Technology (eds. Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C., & Hulshoff Pol, L.W.), Wageningen, The Netherlands, 187-194.

Guiot, S.R., Pauss, A., & Costerton, J.W. (1992). A structured model of the anaerobic granules consortium. Water Sci. Technol., 25, 1-10.

Gurdon, J.B., & Bourillot, P.Y. (2001). Morphogen gradient interpretation. Nature, 413, 797-803.

Hermanowicz, S.W. (1997). A model of two-dimensional biofilm morphology. Water Sci. Technol., 37, 219-222.

Hirsh, R. (1984). Microcolony formation and consortia. Microbial Adhesion and Aggregation (ed. K.C. Marshall), Springer, Berlin, 373-393.

Hulshoff Pol, L.W. (1989). The phenomenon of granulation of anaerobic sludge. Ph.D. Thesis. Agricultural University of Wageningen, The Netherlands.

Hulshoff Pol, L.W., Heijnekamp, K., & Lettinga, G. (1988). The selection pressure as a driving force behind the granulation of anaerobic sludge. Granular Anaerobic Sludge: Microbiology and Technology (eds. Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C., & Hulshoff Pol, L.W.), Wageningen, The Netherlands, 153-161.

Imai, T. (1997). Advanced start up of UASB reactors by adding of water absorbing polymer. Water Sci. Technol., 36, 399-406.

Kalogo, Y., Seka, A.M., & Verstraete, W. (2001). Enhancing the start-up of a UASB reactor treating domestic wastewater by adding a water extract of Moringa oleifera seeds. Appl. Microbiol. Biotechnol., 55, 651-664.

Kreft, J.U., Picioreanu, C., Wimpenny, J.W.T., & van Loosdrecht, M.C.M. (2001). Individual-based modeling of biofilms. Microbiol., 147, 2897-2912.

Lens, P., de Beer, D., Cronenberg, C., Ottengraf, S., & Verstraete, W. (1995). The suse of microsensors to determine distributions in UASB aggregates. Water Sci. Technol., 31, 273-280.

Lettinga, G., van Velsen, A.F.M., Hobma, S.W., de Zeeuw, W., & Klapwijk A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment especially for anaerobic treatment. Biotechnol. Bioeng., 22, 699-734.

MacLeod, F.A., Guiot, S.R., & Costerton, J.W. (1990). Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol., 56, 1598-1607.

Mahoney, E.M., Varangu, L.K., Cairns, W.L., Kosaric, N., & Murray, R.G.E. (1987). The effect of calcium on microbial aggregation during UASB reactor start-up. Water Sci. Technol., 19, 249-260.

Morgan, J.W., Evison, L.M., & Forster, C.F. (1991a). Internal architecture of anaerobic sludge granules. J. Chem. Technol. Biotechnol., 50, 211-226.

Morgan, J.W., Evison, L.M., & Forster, C.F. (1991b). Upflow sludge blanket reactors: the effect of bio-supplements on performance and granulation. J. Chem. Technol. Biotechnol., 52, 243-255.

Mozes, N., & Rouxhet, P.G. (1987). Methods for measuring hydrophobicity of microorganisms. J. Microbiol. Methods, 6, 99-112.

Noguera, D.R., Pizarro, G., Stahl, D.A., & Rittmann, B.E. (1999). Simulations of multispecies biofilm development in three dimensions. Water Sci. Technol., 39, 123-130.

Noyola, A., & Mereno, G. (1994). Granulation production from raw waste activated sludge. Water Sci. Technol., 30, 339-346.

O'Flaherty, V., Lens, P.N., de Beer, D., & Colleran, E. (1997). Effect of feed composition and upflow velocity on aggregate characteristics in anaerobic upflow reactors. Appl. Microbiol. Biotechnol., 47, 102-107.

Palns, S.S., Loewenthal, R.E., Dold, P.L., & Marais, G.R. (1987). Hypothesis for pelletisation in upflow anaerobic sludge blanket reactor. Water SA, 13, 69-80.

Papahadjopoulos, D., Nir, S., & Duzgunes, N. (1990). Molecular mechanisms of calcium-induced membrane fusion. J. Bioenerg. Biomemb., 22, 157-175.

Pereboom, J.H.F. (1994). Size distribution model for methanogenic granules from full scale UASB & IC reactors. Water Sci. Technol., 30 (12), 211-221.

Picioreanu, C., van Loodrecht, M.C.M., & Heijnen, J.J. (1999). Discrete-differential modelling of biofilm structure. Water Sci. Technol., 39, 15-122.

Picioreanu, C., van Loodrecht, M.C.M., & Heijnen, J.J. (2001). Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol. Bioeng., 72, 205-218.

Pratt, L.A., & Kolter, R. (1999). Genetic analysis of bacterial biofilm formation. Curr. Opin. Microbiol., 2, 598-603.

Prescott, L.M., Harley, J.P., & Klein, D.A. (1999). Microbiology. McGraw-Hill, New York.

Rocheleau, S., Greer, C.W., Lawrence, J.R., Cantin, C., Laramee, L., & Guiot, S.R. (1999). Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by in situ hybridization and confocal scanning laser microscopy. Appl. Environ. Microbiol., 65, 2222-2229.

Rouxhet, P.G., & Mozes, N. (1990). Physical chemistry of the interaction between attached microorganisms and their support. Water Sci. Technol., 22, 1-16.

Rudd, T., Sterritt, R.M., & Lester, J.N. (1984). Complexation of heavy metals by extracellular polymers in the activated sludge process. J. Water Pollut. Control. Fed, 56, 1260-1268.

Sam-Soon, P.A., Looewenthal, R.E., Dold, P.L., & Marais, D.V.R. (1988). Pelletization in upflow anaerobic sludge bed reactors. Anaerobic Digestion (eds. Hall, E.R., & Hobson, P.N.), Pergamon Press, Oxford, UK, 55-60.

Sanchez, J.M., Arijo, S., Munoz, M.A., Morinigo, M.A., & Borrego, J.J. (1994). Microbial colonization of different support materials used to enhance the methanogenic process. Appl. Microbiol. Biotechnol., 41, 480-486.

Santegoeds, C.M., Damagaad, L.R., Hesselink, C., Zopfi, J., Lens, P., Muyzer, G., & de Beer, D. (1999). Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analysis. Appl. Environ. Microbiol., 65, 4618-4629.

Schink, B. & Thauer, R. (1988). Energetics of syntrophic methane formation and the influence of aggregation. Proceedings of the Granular Anaerobic Sludge, Pudoc, Wageningen, The Netherlands, 5-17.

Schmidt, J.E., & Ahring, B.K. (1993). Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactor. Enzyme Microb. Technol., 15, 304-310.

Schmidt, J.E., & Ahring, B.K. (1994). Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol., 42, 457-462.

Schmidt, J.E., & Ahring, B.K. (1996). Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng., 49, 229-246.

Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., & Harada, H. (1999). Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogenes and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol., 65, 1280-1288.

Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H., & Nakamura, K. (1998). Diversity of mesophilic and thermophilic granular sludge determined by 16S rRNA gene analysis. Microbiol., 22, 2655-2665.

Shapiro, J.A. (1998). Thing about bacterial populations as multicellular organisms. Annu. Rev. Microbiol., 52, 81-104.

Shen, C.F., Kosaric, N., & Blaszczyk, R. (1993). The effect of selected heavy metals (Ni, Co and Fe) on anerobic granules and their extracellular polymeric substance (EPS). J. Water Res., 27, 25-33.

Show, K.Y., Wang, Y. Foong, S.F., & Tay, J.H. (2004). Accelerated start-up and enhanced granulation in UASB reactors. J. Water Res., 38 (9), 2293-2304.

Tagawa, T., Syutsubo, K., Sekiguchil, Y., Ohashi, A., & Harada, H. (2000). Quantification of methanogen cell density in anaerobic granular sludge consortia by fluorescence in-situ hybridization. Water Sci. Technol., 42, 77-82.

Tay, J.H., & Yan, Y.G. (1996). Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Environ. Res., 68, 1140-1150.

Tay, J.H., Xu, H.L., & Teo, K.C. (2000a). Molecular mechanism of granulation. I:H+ translocation-dehydration theory. J. Environ. Eng., 126, 403-410.

Tay, J.H., He, Y.X., & Yan, Y.G. (2000b). Anaerobic biogranulation using phenol as the sole carbon source. Water Environ. Res., 72, 189-194.

Teo, K.C., Xu, H.L., & Tay, J.H. (2000). Molecular mechanism of granulation—II: proton translocating activity. J. Environ. Eng., 126, 411-418.

Thaveesri, J., Daffonchio, D., Lessens, B., Vandermeren, P., & Verstraete, W. (1995). Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics. Appl. Environ. Microbiol., 61, 3681-3686.

Thiele, J.H., Wu, W.M., Jain, M.K., & Zeikus, J.G. (1990). Ecoengineering high rate biomathanation system: design of improved syntrophic biomathanation catalysis. Biotechnol. Bioeng., 35, 990-999.

Tolker-Nielsen, T., & Molin, S. (2000). Spatial organization of microbial biofilm communities. Microb. Ecol, 40, 75-84.

van den Berg, L., & Kennedy, K.J. (1981). Support materials for stationary fixed film reactors for high-rate methanogenic fermentations. Biotechnol. Lett., 3, 165-170.

van Lier, J.B., Sanx Martin, J.L., & Lettinga, G. (1995). Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. J. Water Res., 30, 199-207.

van Loosdrecht, M.C.M., Lyklema, J., Norde, W., Schraa, G., & Zehnder, A.J.B. (1987). Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol., 53, 1898-1901.

Wang, Y., Show, K.Y., Tay, J.H., & Sim, K.H. (2004). Effects of cationic polymer on start-up and granulation in UASB reactors. J. Chem. Technol. Biotechnol., 79 (3), 219-228.

Wiegant, W.M. (1998). The Spaghetti theory on anaerobic granular sludge fermentation, or the inevitability of granulation. Proceeding of the Granular Anaerobic Sludge, Pudoc, Wageningen, The Netherlands, 146-152.

Wilschut, J., & Hoekstra, D. (1984). Membrane fusion: from liposome to biological membrane. Trend Biochem. Sci., 9, 479-483.

Wimpenny, J.W.T., & Colasanti, R. (1997). A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol., 22, 1-16.

Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., Caldwell, S.J., & Caldwell, D.E. (1994). Multicellular organization in degradative biofilm community. Appl. Environ. Microbiol., 60, 434-446.

Wu, W.M., Kickey, R.F., & Zeikus, J.G. (1991). Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl. Environ. Microbiol., 57, 3438-3449.

Wu, W.M., Jain, M.K., & Zeikus, J.G. (1996). Formation of fatty acid-degrading anaerobic granules by defined species. Appl. Environ. Microbiol., 62, 2037-2044.

Wu, J.H., Liu, W.T., Tseng, I.C., & Cheng, S.S. (2001). Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol., 147, 373-382.

Yu, H.Q., Tay, J.H., & Fang, H.H.P. (2001a). The role of calcium in sludge granulation during UASB reactor start-up. J. Water Res., 35, 1052-1060.

Yu, H.Q., Fang, H.H.P., & Tay, J.H. (2001b). Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere, 44, 31-36.

Zita, A., & Hermansson, M. (1994). Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system. Appl. Environ. Microbiol., 60, 3041-3048.

This Page Intentionally Left Blank

Chapter 2

Was this article helpful?

0 0

Post a comment