References

Bastos, A.E.R., Cassidy, M.B., Trevors, J.T., Lee, H., & Rossi, A. (2001). Introduction of green fluorescent protein gene into phenol-degrading Alcaligenes faecalis cells and their monitoring in phenol-contaminated soil. Appl. Microbiol. Biotechnol., 56 (1-2), 255-260.

Benndorf, D., Loffhagen, N., & Babel, W. (2001). Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol. Lett., 200 (2), 247-252.

Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, E., Wilderer, P.A., & Heijnen J.J. (1999). Aerobic granulation in a sequencing batch reactor. Water Res., 33 (10), 2283-2290.

Beun, J.J., van Loosdrecht, M.C.M., & Heijnen, J.J. (2002). Aerobic granulation in a sequencing batch airlift reactor. Water Res., 36 (3), 702-712.

Bond, P.L., Hugenholtz, P., Keller, J., & Blackall, L.L. (1995). Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol., 61 (5), 1910-1916.

Boyd, T.J., & Carlucci, A.F. (1993). Degradation rates of substituted phenols by natural-populations of marine-bacteria. Aquat. Toxicol., 25 (1-2), 71-82.

Brown, V.M., Jordan, D.H.M., & Tiller, B.A. (1967). The effect of temperature on the acute toxicity of phenol in rainbow trout in hard water. Water Res., 1, 587-589.

Diaz, M.P., Boyd, K.G., Grigson, S.J.W., & Burgess, J.G. (2002). Biodegradation of crude oil across a wide range of salinities by an extremely halotoler-ant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol. Bioeng., 79 (2), 145-153.

Fang, H.H.P., Xu, L.C., & Chan, K.Y. (2002). Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res., 36 (19), 4709-4716.

Fedorak, P.M., & Hrudey, S.E. (1988). Anaerobic degradation of phenolic compounds with application to treatment of industrial waste waters. Biotreatment Systems (ed. Wise, D.L.), CRC Press, Boca Raton, Florida, 170-212.

Filonov, A.E., Duetz, W.A., Karpov, A.V., Gaiazov, R.R., Kosheleva, I.A., Breure, A.M., Filonova, I.F., vanAndel, J.G., & Boronin, A.M. (1997).

Competition of plasmid-hearing Pseudomonas putida strains catabolizing naphthalene via various pathways in chemostat culture. Appl. Microbiol. Biotechnol, 48 (4), 493-498.

Ghisalba, O. (1983). Microbial degradation of chemical waste, an alternative to physical methods of waste disposal. Experientia, 39, 1247-1257.

Harayama, S., Kok, M., & Neidle, E.L. (1992). Functional and Evolutionary Relationships among Diverse Oxygenases. Annu. Rev. Microbiol., 46, 565-601.

Heipieper, H.J., Keweloh, H., & Rehm, H.J. (1991). Influence of Phenols on Growth and Membrane-Permeability of Free and Immobilized Escherichia-Coli. Appl. Environ. Microbiol., 57 (4), 1213-1217.

Heipieper, H.J., Diefenbach, R., & Keweloh, H. (1992). Conversion of Cis Unsaturated Fatty-Acids to Trans, a Possible Mechanism for the Protection of Phenol-Degrading Pseudomonas-Putida P8 from Substrate Toxicity. Appl. Environ. Microbiol, 58 (6), 1847-1852.

Jiang, H.L., Tay, J.H., & Tay, S.T.L. (2002). Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett. Appl. Microbiol., 35 (5), 439-445.

Jiang, H.L., Tay, J.H., & Tay, S.T.L. (2004a). Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl. Microbiol. Biotechnol., 63 (5), 602-608.

Jiang, H.L., Tay, J.H., Maszenan, A.M., & Tay, S.T.L. (2004b). Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl. Environ. Microbiol., 70 (11), 6767-6775.

Kape, R., Parniske, M., & Werner, D. (1991). Chemotaxis and Nod Gene Activity of Bradyrhizobium-Japonicum in Response to Hydroxycinnamic Acids and Isoflavonoids. Appl. Environ. Microbiol., 57 (1), 316-319.

Karlsson, A., Ejlertsson, J., & Svensson, B.H. (2000). CO2-dependent fermentation of phenol to acetate, butyrate and benzoate by an anaerobic, pasteurised culture. Arch. Microbiol, 173 (5-6), 398-402.

Keweloh, H., Heipieper, H.J., & Rehm, H.J. (1989). Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl. Microbiol. Biotechnol., 31, 383-389.

Keweloh, H., Diefenbach, R., & Rehm, H.J. (1991). Increase of Phenol Tolerance of Escherichia-Coli by Alterations of the Fatty-Acid Composition of the Membrane-Lipids. Arch. Microbiol., 157 (1), 49-53.

Kibret, M., Somitsch, W., & Robra, K.H. (2000). Characterization of a phenol degrading mixed population by enzyme assay. Water Res., 34 (4), 1127-1134.

Kiesel, B., & Muller, R.H. (2002). The meta pathway as a potential energy-generating sequence and its effects on the growth rate during the utilisation of aromatics. Acta Biotechnol., 22 (3-4), 221-234.

Lehman, R.M., Colwell, F.S., & Bala, G.A. (2001). Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl. Environ. Microbiol., 67 (6), 2799-2809.

Liu, W.T., Nielsen, A.T., Wu, J.H., Tsai, C.S., Matsuo, Y., & Molin, S. (2001). In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ. Microbiol., 3 (2), 110-122.

Loh, K.C., Chung, T.S., & Ang, W.F. (2000). Immobilized-cell membrane biore-actor for high-strength phenol wastewater. J. Environ. Eng.-ASCE, 126 (1), 75-79.

Mace, S., & Mata-Alvarez, J. (2002). Utilization of SBR technology for wastewater treatment: An overview. Ind. Eng. Chem. Res., 41 (23), 5539-5553.

Maszenan, A.M., Seviour, R.J., Patel, B.K.C., Schumann, P., Burghardt, J., Tokiwa, Y., & Stratton, H.M. (2000). Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp, nov and Tetrasphaera australiensis sp nov. Int. J. Syst. Evol. Microbiol., 50, 593-603.

Morgenroth, E., Sherden, T., van Loosdrecht, M.C.M., Heijnen, J.J., & Wilderer, P.A. (1997). Aerobic granular sludge in a sequencing batch reactor. Water Res., 31 (12), 3191-3194.

Moslemy, P., Neufeld, R.J., & Guiot, S.R. (2002). Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol. Bioeng., 80 (2), 175-184.

Moy, B.Y.P., Tay, J.H., Toh, S.K., Liu, Y., & Tay, S.T.L. (2002). High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol., 34 (6), 407-412.

Muller, R.H., & Babel, W. (1996). Growth rate dependent expression of phenol assimilation pathways in Alcaligenes eutrophus JMP 134 - The influence of formate as an auxiliary energy source on phenol conversion characteristics. Appl. Microbiol. Biotechnol., 46 (2), 156-162.

Ng, L.C., Poh, C.L., & Shingler, V. (1995). Aromatic effector activation of the Ntrc-like transcriptional regulator Phhr limits the catabolic potential of the (methyl)phenol degradative pathway it controls. J. Bacteriol., 177 (6), 1485-1490.

Nordlund, I., Powlowski, J., Hagstrom, A., & Shingler, V. (1990). Complete nucleotide and polypeptide analysis of multi-component phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol., 172, 6826-6833.

Okuyama, H., Okajima, N., Sasaki, S., Higashi, S., & Murata, N. (1991). The Cis Trans Isomerization of the Double-Bond of a Fatty-Acid as a Strategy for Adaptation to Changes in Ambient-Temperature in the Psychrophilic Bacterium, Vibrio Sp Strain Abe-1. Biochim. Biophys. Acta, 1084 (1), 13-20.

Prieto, M.B., Hidalgo, A., Rodriguez-Fernandez, C., Serra, J.L., & Llama, M.J.

(2002). Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl. Microbiol. Biotechnol., 58 (6), 853-859.

Rittmann, B.E., & McCarty, P.L. (2001). Environmental Biotechnology: Principles and Applications, New York: McGraw-Hill.

Smith, E.A., & Macfarlane, G.T. (1997). Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb. Ecol., 33 (3), 180-188.

Snaidr, J., Amann, R., Huber, I., Ludwig, W., & Schleifer, K.H. (1997). Phy-logenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol., 63 (7), 2884-2896.

Tay, J.H., Liu, Q.S., & Liu, Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl. Microbiol. Biotechnol., 57 (1-2), 227-233.

Tay, S.T.L., Ivanov, V., Yi, S., Zhuang, W.Q., & Tay, J.H. (2002). Presence of anaerobic bacteroides in aerobically grown microbial granules. Microb. Ecol., 44 (3), 278-285.

Tay, J.H., Tay, S.T.L., Ivanov, V., Pan, S., Jiang, H.L., & Liu, Q.S.

(2003). Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Lett. Appl. Microbiol., 36 (5), 297-301.

Tay, J.H., Jiang, H.L., & Tay, S.T.L. (2004) High-rate biodegradation of phenol by aerobically grown microbial granules. J. Environ. Eng.-ASCE, 130 (12), 1415-1423.

Tay, S.T.L., Moy, B.Y.P., Jiang, H.L., & Tay, J.H. (2005). Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed. J. Biotechnol., 115 (4), 387-395.

Tresse, O., Lorrain, M.J., &Rho, D. (2002). Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturing gradient gel electrophoresis. Appl. Microbiol. Biotechnol., 59 (4-5), 585-590.

van Schie, P.M., & Young, L.Y. (2000). Biodegradation of phenol: mechanisms and applications. Bioremediation J., 4 (1), 1-18.

Villaverde, S., & Fernandez-Polanco, F. (1999). Spatial distribution of respiratory activity in Pseudomonas putida 54G biofilms degrading volatile organic compounds (VOC). Appl. Microbiol. Biotechnol, 51 (3), 382-387.

Watanabe, K., Hino, S., & Takahashi, N. (1996). Responses of activated sludge to an increase in phenol loading. J. Ferment. Bioeng., 82 (5), 522-524.

Watanabe, K., Teramoto, M., & Harayama, S. (1999). An outbreak of nonfloc-culating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Appl. Environ. Microbiol., 65 (7), 2813-2819.

Watanabe, K., Teramoto, M., Futamata, H., & Harayama, S. (1998). Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol., 64 (11), 4396-4402.

Whiteley, A.S., Wiles, S., Lilley, A.K., Philp, J., & Bailey, M.J. (2001). Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. J. Microbiol. Methods, 44 (1), 79-88.

Wilderer, P.A., Irvine, R.L., & Goronszy, M.C. (2001). Sequencing Batch Reactor Technology, IWA Publishing, London.

Yap, L.F., Lee, Y.K., & Poh, C.L. (1999). Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl. Microbiol. Biotechnol., 51 (6), 833-840.

Yoong, E.T., Lant, P.A., & Greenfield, P.F. (2000). In situ respirometry in an SBR treating wastewater with high phenol concentrations. Water Res., 34 (1), 239-245.

Zhuang, W.Q., Tay, J.H., Maszenan, A.M., Krumholz, L.R., & Tay, S.T.L. (2003). Importance of Gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments. Lett. Appl. Microbiol., 36 (4) 251-257.

Was this article helpful?

0 0
Trash To Cash

Trash To Cash

This book will surely change your life due to the fact that after reading this book and following through with the steps that are laid out for you in a clear and concise form you will be earning as much as several thousand extra dollars a month,  as you can see by the cover of the book we will be discussing how you can make cash for what is considered trash by many people, these are items that have value to many people that can be sold and help people who need these items most.

Get My Free Ebook


Post a comment